高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杉木应压木木质部细胞形态特征及主要代谢成分表征

张胜龙 刘京晶 楼雄珍 刘洋 童再康 黄华宏

张胜龙, 刘京晶, 楼雄珍, 刘洋, 童再康, 黄华宏. 杉木应压木木质部细胞形态特征及主要代谢成分表征[J]. 北京林业大学学报, 2015, 37(5): 126-133. doi: 10.13332/j.1000-1522.20140396
引用本文: 张胜龙, 刘京晶, 楼雄珍, 刘洋, 童再康, 黄华宏. 杉木应压木木质部细胞形态特征及主要代谢成分表征[J]. 北京林业大学学报, 2015, 37(5): 126-133. doi: 10.13332/j.1000-1522.20140396
ZHANG Sheng-long, LIU Jing-jing, LOU Xiong-zhen, LIU Yang, TONG Zai-kang, HUANG Hua-hong. Morphological characteristics of cells and main metabolic components in xylem of Cunninghamia lanceolata compression wood.[J]. Journal of Beijing Forestry University, 2015, 37(5): 126-133. doi: 10.13332/j.1000-1522.20140396
Citation: ZHANG Sheng-long, LIU Jing-jing, LOU Xiong-zhen, LIU Yang, TONG Zai-kang, HUANG Hua-hong. Morphological characteristics of cells and main metabolic components in xylem of Cunninghamia lanceolata compression wood.[J]. Journal of Beijing Forestry University, 2015, 37(5): 126-133. doi: 10.13332/j.1000-1522.20140396

杉木应压木木质部细胞形态特征及主要代谢成分表征

doi: 10.13332/j.1000-1522.20140396
基金项目: 

国家自然科学基金项目(31300565)、浙江省农业科技重点项目(2011C12014)、浙江农林大学亚热带森林资源培育研究中心预研项目(CCSFR2013002)、浙江农林大学研究生科研创新基金项目(3122013240284)、浙江省新苗人才项目(2014R412041)。

详细信息
    作者简介:

    张胜龙。主要研究方向:林业生物技术。Email:bio2007@126.com 地址:311300 浙江省临安市环城北路88号浙江农林大学东湖校区林业与生物技术学院智能实验楼。责任作者: 黄华宏,博士,副教授。主要研究方向:林业生物技术。Email: huanghh1976@163.com 地址:同上。

    张胜龙。主要研究方向:林业生物技术。Email:bio2007@126.com 地址:311300 浙江省临安市环城北路88号浙江农林大学东湖校区林业与生物技术学院智能实验楼。责任作者: 黄华宏,博士,副教授。主要研究方向:林业生物技术。Email: huanghh1976@163.com 地址:同上。

Morphological characteristics of cells and main metabolic components in xylem of Cunninghamia lanceolata compression wood.

  • 摘要: 为探讨主要代谢成分与应压木形成的关系,以拉弯诱导形成的杉木应压木为材料,在明确其重要显微特征、木质素含量的基础上,运用气相色谱质谱联用系统(GC-MS)对主要代谢成分进行了鉴定和相对表达丰度分析。结果表明:杉木应压木管胞多以椭圆形呈现,且管胞壁明显增厚。应压木管胞平均长度和宽度分别为1 347.34和20.18 μm,均显著小于对应木;平均壁腔比为0.43,显著大于对应木。应压木木质素的相对含量较对应木增加21.9%。在3个拉弯时期皆可鉴定出18种代谢成分,其中有机酸5种、单糖4种、二糖3种、醇类和氨基酸各2种、无机酸和内酯类各1种。时期Ⅰ应压木中果糖和葡萄糖含量与对应木差异不大,但这2种化合物含量均随拉弯时间延长呈现下降趋势,且时期Ⅱ、Ⅲ在应压木中的含量显著小于对应木,符合应压木纤维素含量下降的事实。应压木中与木质素合成相关的莽草酸含量呈上升趋势,其在时期Ⅲ应压木中的含量显著高于对应木,这解释了应压木中木质素含量明显多于对应木的现象。

     

  • [1] LIN J X,LI Z L. Comparative anatomy of normal wood and compression wood of masson pine (Pinus Massoniana)[J]. Journal of Integrative Plant Biology,1993,35(3):201-205.
    [1] DU S,UNO H,YAMAMOTO F. Roles of auxin and gibberellin in gravity induced tension wood formation in Aesculus turbinata seedlings[J]. IAWA Journal,2004,25:337-347.
    [2] FUNADA R,MIURA T,SHIMIZU Y,et al. Gibberellin-induced formation of tension wood in angiosperm trees[J]. Planta,2008,227:1409-1414.
    [2] LIU Y M,LIU S Q. Anatomical properties of compression wood of three-year-old loblolly pine induced by artificial inclination[J]. Scientia Silvae Sinicae,2012, 48(1): 131-137.
    [3] SHI J T, SUN Q F, XING D, et al. Effect of stem bending angle on formative tissue during wood formation of Pinus koraiensis[J]. Forest Research, 2012,25(5): 638-643.
    [3] JIN H,KWON M. Mechanical bending-induced tension wood formation with reduced lignin biosynthesis in Liriodendron tulipifera[J]. Journal of Wood Science,2009,55:401-408.
    [4] TIMELL T E. Compression wood in gymnosperms[M]. Heidelberg: Springer-Verlag,1986:105-108.
    [4] LIAO S X,CUI K,SUN Q F,et al. Comparative study on physical and mechanical properties of normal and compressed woods from Pinus yunnanensis plantations[J]. Journal of Northwest Forestry University,2013,28(6): 161-164.
    [5] 林金星,李正理. 马尾松正常木与应压木的比较解剖[J]. 植物学报,1993,35(3):201-205.
    [5] SHI J T, LI J. Comparative analysis of polar phase metabolite in wood forming tissue of normal wood and reaction wood in Pinus koraiensis[J]. Journal of Beijing Forestry University, 2011, 33(6): 196-200.
    [6] LI Z Q,LI X C,HUANG L B,et al. Study on elite provenance selection of Cunninghamia lanceolata for short rotation timber[J].Journal of Jiangsu Forestry Science and Technology,1993,20(3):1-7,20.
    [6] 刘亚梅,刘盛全. 人工倾斜火炬松3年生苗木应压木的解剖性质[J]. 林业科学,2012,48(1):131-137.
    [7] LI J. Wood science[M]. Beijing: Higher Education Press,2002:16-20.
    [7] 石江涛,孙庆丰,邢东,等. 红松木倾斜角度对其木材形成组织的影响[J]. 林业科学研究,2012,25(5):638-643.
    [8] 廖声熙,崔凯,孙庆丰,等. 云南松人工林正常木与应压木物理力学性质比较[J]. 西北林学院学报,2013,28(6):161-164.
    [8] CHEN C D,HUANG R M,LIN J X,et al. Anatomical studies on compression wood and opposite wood of Masson pine branches[J].Journal of Nanjing Forestry University,1993,17(4):27-31.
    [9] SUNDBERG B,TUOMINEN H,LITTLE A. Effects of the indole-3-acetic acid (IAA) transport inhibitors N-1-naphthylphtalamic acid and morphactin on endogenous IAA dynamics in relation to compression wood formation in 1-year-old Pinus sylvestris (L.) shoots[J]. Plant Physiol,1994,106:469-476.
    [9] CHEN C D,HUANG R M,LIN Y H,et al. Studies on chemico-physical properties of compression wood and opposite wood of Masson pine branches[J].Journal of Northeast Forestry University,1995,23(6):52-56.
    [10] CHEN Y Z, TAN X F, CLAPHAM D. Lignin biosynthesis and genetic regulation[J]. Acta Agriculturae Universitatis Jiangxiensis:Natural Sciences Edition, 2003, 25(4): 613-617.
    [10] LITTLE C,EKLUND L. Ethylene in relation to compression formation in Abies balsamea shoots[J]. Trees,1999,13:173-177.
    [11] LI X,YANG X,WU H X. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism[J]. BMC Genomics,2013,14:768.
    [11] BUCHANAN B B,GRUISSEM W,JONES R L. Plant biochemistry and molecular biology[M]. QU L J, tran. Beijing:Science Press,2004:781-783.
    [12] PLOMION C, PIONNEAU C,BRACH J,et al. Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster Ait.) [J]. Plant Physiology,2000,123:959-969.
    [13] 石江涛,李坚. 红松正常木与应力木木材形成组织中极性代谢物对比分析[J].北京林业大学学报,2011,33(6):196-200.
    [14] 李志琪,李晓储,黄利斌,等. 杉木短轮伐建筑材优良种源选择研究[J]. 江苏林业科技,1993,20(3):1-7,12.
    [15] 李坚. 木材科学[M]. 北京:高等教育出版社,2002:16-20.
    [16] DONALDSON L A. Within and between tree variation in microfibril angle in Pinus radiada[J]. New Zealand Journal of Forestry Science,1992,22(1):77- 86.
    [17] CHANG X P,CHANDRA R,BERLETH T,et al. Rapid,microscale,acetyl bromide-based method for high-throughput determination of lignin content in Arabidopsis thaliana[J]. Agricultural and Food Chemistry,2008,56:6825-6834
    [18] LISEC J,SCHAUER N,KOPKA J,et al. Gas chromatography mass spectrometry-based metabolite profiling in plants[J].Nat Protoc,2006,1:387-396.
    [19] GOUBET F,MISRAHI A,PARK S K,et al. AtCSLA7,a cellulose synthase-like putative glycosyltransferase,is important for pollen tube growth and embryogenesis in Arabidopsis[J]. Plant Physiol, 2003,131(2):547-557.
    [20] FAVERY B,RYAN E,FOREMAN J,et al. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis[J]. Genes Dev,2001,15:79-89.
    [21] 陈承德,黄日明,林金星,等. 马尾松枝娅材应压木与对应木的解剖研究[J]. 南京林业大学学报,1993,17(4):27-31.
    [22] YEH T F,MORRIS C R,GOLDFARB B,et al. Utilization of polar metabolite profiling in the comparison of juvenile wood and compression wood in loblolly pine (Pinus taeda)[J]. Tree Physiology,2006,26:1497-1503.
    [23] DONALDSON L A,KNOX J P. Localization of cell wall polysaccharides in normal and compression wood of radiate pine:relationships with lignification and microfibril orientation[J]. Plant Physiology,2012,158: 642-653.
    [24] YAMAGUCHI K,SHIMAJI K,ITOH T. Simultaneous inhibition and induction of compression wood formation by morphactin in artificially inclined stems of Japanese larch (Larix leptolepis Gordon) [J]. Wood Science Technology,1983,17(2):81-89.
    [25] TIMELL T E. Recent progress in the chemistry and topochemistry of compression wood[J]. Wood Sci Technol,1982,16:83-122.
    [26] DU S,YAMAMOTO F. An overview of the biology of reaction wood formation[J]. Journal of Integrative Plant Biology,2007,49(2):131-143.
    [27] 陈承德,黄日明,林元辉,等. 马尾松枝娅材应压木与对应木的化学及物理力学性质研究[J]. 东北林业大学学报,1995,23(6):52-56.
    [28] CÔTÉ W J,DAY A C,TIMELL T E. Studies on compression wood VII: Distribution of lignin in normal and compression wood of tamarack (Larix laricina (Du Rot) K. Koch) [J]. Wood Sci Technol,1968,2:13-37.
    [29] GUERRIERO G,FUGELSTAD J,BULONE V. What do we really know about cellulose biosynthesis in higher plants?[J]. Journal of Integrative Plant Biology,2010,52(2):161-175.
    [30] KIMURA S,KONDO T. Recent progress in cellulose biosynthesis[J]. J Plant Res,2002,115(4):297-302.
    [31] PENG L C,KAWAGOE Y,HOGAN P,et al. Sitosterol-β-glucoside as primer for cellulose synthesis in plants[J]. Science,2002,295:147-150.
    [32] ZHENG Y,ANDERSON S,ZHANG Y,et al. The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications[J]. J Biol Chem,2011,286(41):36108-36118.
    [33] 陈永忠,谭晓风,CLAPHAM D. 木质素生物合成及其基因调控研究综述[J].江西农业大学学报:自然科学版,2003,25(4):613-617.
    [34] LI L,LU S,CHIANG V.A genomic and molecular view of wood formation[J]. Critical Reviews in Plant Sciences,2006,25:215-233.
    [35] HILLIS W E. Formation of robinetin crystals in vessels of Intsia species[J]. IAWA Journal,1996,17(4): 405-419.
    [36] PALLARDY S G. Physiology of woody plants[M]. London:Academic Press,2008: 454-455.
    [37] BUCHANAN B B,GRUISSEM W,JONES R L. 植物生物化学与分子生物学[M]. 瞿礼嘉,译. 北京:科学出版社,2004: 781-783.
  • 加载中
计量
  • 文章访问数:  2048
  • HTML全文浏览量:  145
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-31

目录

    /

    返回文章
    返回