高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

笃斯越桔伴生植物矿质元素与土壤肥力因子的多元分析

吴燕 胡琦鹏 白永超 陈露 唐仲秋 侯智霞

吴燕, 胡琦鹏, 白永超, 陈露, 唐仲秋, 侯智霞. 笃斯越桔伴生植物矿质元素与土壤肥力因子的多元分析[J]. 北京林业大学学报, 2019, 41(10): 37-48. doi: 10.13332/j.1000-1522.20180420
引用本文: 吴燕, 胡琦鹏, 白永超, 陈露, 唐仲秋, 侯智霞. 笃斯越桔伴生植物矿质元素与土壤肥力因子的多元分析[J]. 北京林业大学学报, 2019, 41(10): 37-48. doi: 10.13332/j.1000-1522.20180420
Wu Yan, Hu Qipeng, Bai Yongchao, Chen Lu, Tang Zhongqiu, Hou Zhixia. Multivariate analysis of mineral elements and soil fertility factors in associated plants of Vaccinium uliginosum[J]. Journal of Beijing Forestry University, 2019, 41(10): 37-48. doi: 10.13332/j.1000-1522.20180420
Citation: Wu Yan, Hu Qipeng, Bai Yongchao, Chen Lu, Tang Zhongqiu, Hou Zhixia. Multivariate analysis of mineral elements and soil fertility factors in associated plants of Vaccinium uliginosum[J]. Journal of Beijing Forestry University, 2019, 41(10): 37-48. doi: 10.13332/j.1000-1522.20180420

笃斯越桔伴生植物矿质元素与土壤肥力因子的多元分析

doi: 10.13332/j.1000-1522.20180420
基金项目: 国家林业科学技术推广项目(200-621603036)
详细信息
    作者简介:

    吴燕。主要研究方向:森林培育与经济林栽培研究。Email:wuyanparis@163.com  地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    侯智霞,副教授。主要研究方向:森林培育与经济林栽培研究。Email:hzxn2004@163.com 地址:同上

Multivariate analysis of mineral elements and soil fertility factors in associated plants of Vaccinium uliginosum

  • 摘要: 目的分析大兴安岭地区笃斯越桔伴生植物柴桦、杜香矿质元素含量差异特性,探究伴生植物叶片及根系矿质元素与根系层土壤肥力因子的相关关系,并筛选出影响其矿质元素含量的主要影响因子,明确伴生植物与笃斯越桔矿质元素含量和土壤肥力因子间关系的差异,为笃斯越桔及其伴生植物的合理抚育管理提供理论基础。方法通过方差分析、典型相关分析及回归方程的建立,探究大兴安岭地区3种立地条件(山地、水湿地冻土、水湿地有土壤)中的笃斯越桔伴生植物矿质元素含量的差异性及与土壤因子的相关关系。结果(1) 明确了立地条件主要影响柴桦植株中K、Fe、Mn、Zn及根系N、P、Mg的含量和杜香植株中P、Ca、Mg、Mn、叶片K及根系N、Fe的含量,不同立地条件下元素含量差异显著。(2) 3种植物叶片与根系中的矿质元素相关关系强弱表现为笃斯越桔 > 杜香 > 柴桦,且笃斯越桔与其伴生植物叶片和根系的矿质元素含量比值差异显著(P < 0.05),说明笃斯越桔和伴生植物对矿质元素的利用效率不同。(3) 多元线性回归分析表明,影响伴生植物柴桦、杜香矿质元素含量的主要因素为土壤pH,且除柴桦叶片中Mn含量外,其余元素含量均随pH的减小而增加;影响柴桦矿质元素含量的土壤因子有有效Zn、土壤有机质,且柴桦叶片还受土壤中硝态N、有效Cu含量的影响;影响杜香矿质元素含量的土壤养分因子为有效P和有效Cu。结论笃斯越桔伴生植物柴桦和杜香在不同立地条件下矿质元素含量差异显著,并与土壤因子有明显相关关系,且主要受土壤pH及有效Cu含量的影响。伴生植物叶片与根系的矿质元素比值较小,相关性较弱,较笃斯越桔而言,受环境影响更为明显。

     

  • 图  1  不同立地条件柴桦、杜香叶片与根系常量元素

    不同小写字母表示存在显著差异(P < 0.05)。下同。 Different small letters indicate significant difference at P < 0.05 lever. The same as below.

    Figure  1.  Content of leaf and root macro elements of Betula fruticose and Ledum palustre at different site types

    图  2  不同立地条件柴桦、杜香叶片与根系微量元素

    Figure  2.  Content of leaf and root micro elements of Betula fruticose and Ledum palustre at different site types

    表  1  植物叶片与根系矿质元素相关关系

    Table  1.   Correlations between mineral elements in plant leaves and roots

    植物
    Plant
    叶片矿质元素 Mineral element
    in leaf
    根系矿质元素 Mineral elements in roots
    NPKCaMgFeMgZnCu
    笃斯越桔
    Vaccinium uliginosum
    N 0.91** 0.65 0.82** 0.62 − 0.06 0.84** − 0.07 − 0.75* − 0.29
    P 0.34 0.01 0.37 0.14 0.20 0.55 0.53 − 0.07 0.10
    K 0.90** 0.74* 0.94** 0.89** 0.19 0.87** − 0.41 − 0.88** − 0.12
    Ca 0.97** 0.84** 0.91** 0.78* 0.05 0.90** − 0.21 − 0.89** − 0.33
    Mg − 0.88** − 0.79* − 0.85** − 0.74* − 0.13 − 0.83** 0.45 0.88** 0.21
    Fe 0.72* 0.61 0.74* 0.80** − 0.01 0.58 − 0.56 − 0.86** − 0.01
    Mn − 0.35 − 0.23 − 0.46 − 0.34 − 0.64 − 0.45 0.05 − 0.01 0.36
    Zn − 0.86** − 0.66 − 0.71* − 0.62 0.32 − 0.78* 0.09 0.91** 0.01
    Cu − 0.26 − 0.33 − 0.45 − 0.51 − 0.54 − 0.01 0.62 0.03 0.81**
    柴桦
    Betula fruticose
    N 0.48 0.58 0.74* 0.51 − 0.44 − 0.57 0.75* − 0.36 − 0.56
    P − 0.34 − 0.30 0.48 − 0.40 − 0.62 0.28 0.10 0.48 − 0.12
    K 0.65 0.60 0.62 0.54 − 0.21 − 0.61 0.90** − 0.53 − 0.67
    Ca 0.28 0.35 − 0.03 − 0.19 0.00 − 0.16 0.18 − 0.26 − 0.51
    Mg 0.41 0.46 0.767* 0.39 − 0.56 − 0.46 0.75* − 0.28 − 0.54
    Fe − 0.95** − 0.93** − 0.30 − 0.65 − 0.29 0.84** − 0.86** 0.93** 0.86**
    Mn 0.55 0.60 0.75* 0.44 − 0.44 − 0.58 0.83** − 0.43 − 0.66
    Zn − 0.30 − 0.20 0.68* − 0.19 − 0.91** 0.11 0.13 0.43 0.02
    Cu − 0.09 − 0.27 − 0.57 0.06 0.10 0.12 − 0.26 0.10 0.541
    杜香
    Ledum palustre
    N 0.67 − 0.42 0.15 − 0.32 0.32 − 0.90* 0.22 − 0.13 0.09
    P − 0.63 0.77 − 0.48 0.48 − 0.74 0.00 − 0.64 0.89* − 0.25
    K 0.94** − 0.70 0.77 − 0.59 0.71 − 0.68 0.74 − 0.43 − 0.04
    Ca − 0.53 0.68 − 0.92** 0.84* − 0.83* − 0.21 − 0.63 0.412 0.28
    Mg 0.88* − 0.99** 0.77 − 0.90* 0.99** − 0.10 0.84* − 0.83* 0.21
    Fe 0.74 − 0.64 0.09 − 0.45 0.48 − 0.67 0.36 − 0.48 0.42
    Mn 0.89* − 0.99** 0.76 − 0.88* 0.98** − 0.10 0.87* − 0.84* 0.26
    Zn − 0.37 0.57 − 0.30 0.27 − 0.54 − 0.26 − 0.53 0.85* − 0.33
    Cu 0.52 − 0.21 − 0.09 0.03 0.07 − 0.93** 0.11 − 0.10 0.20
    注:*表示P < 0.05不同植物矿质元素含量差异显著水平;**表示P < 0.01不同植物矿质元素含量差异显著水平。下同。Notes: * stands for P < 0.05 significant difference level in mineral element content among different plants; ** stands for P < 0.01 significant difference level in mineral element content among different plants. The same as below.
    下载: 导出CSV

    表  2  大兴安岭地区植物叶片与根系矿质元素比值(平均值 ± 标准误差)

    Table  2.   Ratio of mineral elements between leaves and roots of plants in Daxing’an Mountain (average value ± standard error)

    植物
    Plant
    矿质元素比值 Ratio of mineral elements
    NPKCaMgFeMnZnCu
    笃斯越桔
    Vaccinium uliginosum
    1.97 ± 0.10a 1.14 ± 0.09b 2.47 ± 0.10a 1.21 ± 0.03a 1.28 ± 0.03a 0.64 ± 0.05c 1.01 ± 0.01ab 1.12 ± 0.02a 1.16 ± 0.06a
    柴桦
    Betula fruticose
    2.08 ± 0.29a 6.77 ± 1.15a 1.42 ± 0.20b 1.14 ± 0.10a 1.53 ± 0.45a 0.85 ± 0.03b 1.24 ± 0.23a 1.19 ± 0.21a 0.93 ± 0.03b
    杜香
    Ledum palustre
    1.06 ± 0.11b 3.67 ± 1.06b 1.14 ± 0.13b 1.03 ± 0.12a 1.37 ± 0.13a 1.30 ± 0.09a 0.63 ± 0.03c 1.51 ± 0.05a 0.95 ± 0.03b
    注:不同小写字母表示不同植物矿质元素叶片与根系含量比值存在显著差异(P < 0.05)。Note: different small letters indicate significant difference in the ratio of mineral elements between leaves and roots in different plants at P < 0.05 level.
    下载: 导出CSV

    表  3  柴桦矿质元素与根系层土壤因子间的相关性

    Table  3.   Correlations between mineral elements of Betula fruticose and soil factors of root layer

    植物矿
    质元素Mineral
    element
    in plant
    部位
    Part
    土壤因子 Soil factor
    硝态 N
    Nitrate
    N
    铵态 N
    Ammonium N
    有效 P
    Available P
    速效 K
    Available K
    有效 Ca
    Available Ca
    有效 Mg
    Available Mg
    有效 Fe
    Available Fe
    有效 Mn
    Available Mn
    有效 Cu
    Available Cu
    有效 Zn
    Available Zn
    有机质
    Organic matter
    pH
    N 叶片Leaf 0.79* 0.85** 0.90** 0.84** 0.01 0.67* 0.32 0.94** − 0.6 − 0.48 0.93** 0.79*
    根系Root 0.90** 0.83** 0.74* 0.67* 0.84** − 0.20 − 0.62 0.63 0.29 − 0.95** 0.56 0.60
    P 叶片Leaf − 0.07 0.12 0.24 0.34 − 0.69* 0.77* 0.81** 0.36 − 0.79* 0.43 0.31 0.50
    根系Root 0.90** 0.84** 0.76* 0.68* 0.76* − 0.14 − 0.53 0.71* 0.12 − 0.97** 0.55 0.63
    K 叶片Leaf 0.82** 0.92** 0.95** 0.93** 0.23 0.47 0.09 0.92** − 0.35 − 0.57 0.89** 0.87**
    根系Root 0.49 0.59 0.67* 0.69* − 0.20 0.57 0.45 0.74* − 0.63 − 0.25 0.59 0.52
    Ca 叶片Leaf 0.24 0.14 0.1 0.17 0.16 − 0.06 − 0.13 0.11 − 0.1 − 0.28 − 0.06 0.28
    根系Root 0.71* 0.65 0.58 0.45 0.62 − 0.05 − 0.44 0.52 − 0.23 − 0.71* 0.64 0.38
    Mg 叶片Leaf 0.74* 0.83** 0.90** 0.90** − 0.1 0.76* 0.43 0.93** − 0.68* − 0.38 0.94** 0.81**
    根系Root 0.01 − 0.08 − 0.19 − 0.26 0.77* − 0.89** − 0.89** − 0.34 0.91** − 0.38 − 0.48 − 0.18
    Fe 叶片Leaf − 0.91** − 0.86** − 0.79* − 0.71* − 0.76* 0.15 0.53 − 0,71* − 0.17 0.95** − 0.55 − 0.69*
    根系Root − 0.84** − 0.82** − 0.77* − 0.71* − 0.73* 0.15 0.50 − 0.71* − 0.11 0.93** − 0.56 − 0.54
    Mn 叶片Leaf − 0.91** − 0.86** − 0.79* − 0.71* − 0.76* 0.15 0.53 − 0,71* − 0.17 0.95** − 0.55 − 0.69*
    根系Root − 0.84** − 0.82** − 0.77* − 0.71* − 0.73* 0.15 0.50 − 0.71* − 0.11 0.93** − 0.56 − 0.54
    Zn 叶片Leaf 0.09 0.25 0.37 0.45 − 0.72* 0.94** 0.90** 0.50 − 0.95** − 0.32 0.57 0.39
    根系Root − 0.84** − 0.76* − 0.66 − 0.59 − 0.91** 0.37 0.74* − 0.51 − 0.43 0.98** − 0.42 − 0.44
    Cu 叶片Leaf − 0.39 − 0.38 − 0.41 − 0.38 0.13 − 0.42 − 0.28 − 0.42 0.39 0.16 − 0.30 − 0.42
    根系Root − 0.78* − 0.77* − 0.74* − 0.70* − 0.49 − 0.03 0.26 − 0.71* 0.07 0.74* − 0.44 − 0.81**
    注:*表示P < 0.05植物矿质元素含量差异显著水平;**表示P < 0.01植物矿质元素含量差异显著水平。下同。Notes: * stands for significant difference in mineral element at P < 0.05 level; ** stands for significant difference in mineral element content at P < 0.01 level. The same as below.
    下载: 导出CSV

    表  4  杜香矿质元素与根系层土壤因子间的相关性

    Table  4.   Correlations between mineral elements of Ledum palustre and soil factors of root layer

    植物矿
    质元素
    Mineral
    element
    in plant
    部位
    Part
    土壤因子 Soil factor
    硝态 N
    Nitrate N
    铵态 N
    Ammonium N
    有效 P
    Available P
    速效 K
    Available K
    有效 Ca
    Available Ca
    有效 Mg
    Available Mg
    有效 Fe
    Available Fe
    有效 Mn
    Available Mn
    有效 Cu
    Available Cu
    有效 Zn Available Zn有机质
    Organic matter
    pH
    N 叶片Leaf 0.85* 0.81 0.76 0.83* 0.82* − 0.77 − 0.82* 0.62 0.73 − 0.80 0.22 0.63
    根系Root 0.85* 0.85* 0.84* 0.85* 0.85* − 0.83* − 0.85* 0.54 0.89* − 0.78 0.13 0.49
    P 叶片Leaf − 0.88* − 0.77 − 0.72 − 0.76 − 0.78 0.72 0.78 − 0.36 − 0.77 0.83* − 0.45 0.21
    根系Root − 0.98** − 0.98** − 0.95** − 0.98** − 0.98** 0.94** 0.98** − 0.71 − 0.93** 0.96** − 0.41 − 0.44
    K 叶片Leaf 0.7 0.74 0.75 0.73 0.73 − 0.76 − 0.73 0.5 0.77 − 0.66 − 0.1 0.45
    根系Root 0.64 0.79 − 0.85* 0.77 0.78 − 0.82* − 0.77 0.72 0.8 − 0.7 0.3 0.28
    Ca 叶片Leaf − 0.63 − 0.8 − 0.86* − 0.79 − 0.8 0.83* 0.79 − 0.86* 0.96** 0.73 − 0.48 − 0.4
    根系Root − 0.81* − 0.91* − 0.92** − 0.92** − 0.91* 0.93** 0.91* − 0.95** 0.79 0.88* − 0.34 − 0.65
    Mg 叶片Leaf 0.97** 1.00** 0.99** 1.00** 0.99** − 0.97** − 0.99** 0.77 0.44 − 0.96** 0.44 0.41
    根系Root 0.95** 1.00** 0.99** 1.00** 1.00** − 1.00** − 1.00** 0.85* 0.93** − 0.97** 0.42 0.42
    Fe 叶片Leaf 0.62 0.51 0.44 0.53 0.52 − 0.5 − 0.51 0.3 0.97** − 0.53 − 0.28 0.58
    根系Root − 0.13 − 0.07 − 0.06 − 0.08 − 0.07 0.13 0.08 0.06 − 0.1 0.06 0.72 − 0.37
    Mn 叶片Leaf 0.96** 0.99** 0.98** 0.99** 0.99** − 0.95** − 0.99** 0.73 − 0.61 − 0.94** 0.47 0.4
    根系Root 0.76 0.8 0.82* 0.79 0.79 − 0.72 − 0.79 0.4 0.95** − 0.67 0.57 0.22
    Zn 叶片Leaf − 0.7 − 0.57 − 0.52 − 0.56 − 0.56 0.49 0.59 − 0.13 0.11 0.64 − 0.62 0.48
    根系Root − 0.89* − 0.8 − 0.74 − 0.8 − 0.8 0.7 0.81 − 0.36 0.83* 0.8 − 0.65 − 0.01
    Cu 叶片Leaf 0.26 0.11 0.05 0.12 0.12 − 0.14 − 0.12 − 0.11 0.91* − 0.15 − 0.64 0.3
    根系Root 0.26 − 0.13 0.07 0.14 0.13 0.03 − 0.14 − 0.28 0.28 − 0.08 0.45 0.04
    下载: 导出CSV

    表  5  影响柴桦矿质元素含量的土壤因子筛选及回归方程的建立

    Table  5.   Selection of soil factors and establishment of regression equation affecting the Betula fruticose mineral element content

    器官
    Organ
    矿质营养
    Mineral nutrient
    土壤因子
    Soil factor
    回归方程
    Regression equation
    F
    F value
    叶片 Leaf y1 x1, x3, x8, x9, x10, x11, x12 y1 = 1.021 − 0.07x1 + 0.46x3 − 0.094x8 + 0.044x9 + 0.147x10 + 0.102x11 − 0.209x12 52.35**
    y2 x9 y2 = 1 + 0.128x9 10.29*
    y3 x1, x3, x7, x8, x9, x10, x11, x12 y3 = 1.307 − 0.089x1 − 0.090x3 − 0.088x7 − 0.176x8 + 0.122x9 + 0.493x10 +
      0.185x11 − 0.740x12
    78.30**
    y5 x1, x7, x8, x9, x10, x11, x12 y5 = 1.147 − 0.055x1 − 0.05x7 − 0.103x8 + 0.08x9 + 0.21x10 + 0.096x11 − 0.361x12 415.61**
    y6 x1, x3, x8, x10, x11, x12 y6 = 3.632 − 0.133x1 − 0.150x3 − 0.319x8 + 0.484x10 + 0.326x11 − 1.219x12 34.90**
    y7 x1, x7, x8, x9, x10, x11, x12 y7 = 1.6 + 0.234x1 + 0.233x7 + 0.653x8 − 0.271x9 − 1.367x10 − 0.657x11 + 2.465x12 178.21**
    y8 x9 y8 = 2.521 − 0.472x9 22.25*
    根系 Root y10 x10, x12 y10 = 1.027 + 0.014x10 − 0.038x12 9.95*
    y11 x8, x10, x11, x12 y11 = 1.815 − 0.343x8 + 0.762x10 + 0.594x11 − 1.31x12 30.27**
    y12 x8, x10, x11 y12 = 1.015-0.067x8 + 0.115x10 + 0.087x11 11.33*
    y14 x7, x9, x10 y14 = 0.733 + 0.122x7 − 0.11x9 + 0.059x10 73.41**
    y15 x3, x7, x8, x10, x11, x12 y15 = 3.423 − 0.22x3 − 0.195x7 − 0.269x8 + 0.739x10 + 0.572x11-1.336x12 26.67**
    y16 x10, x11 y16 = 1.263 − 1.491x10 − 2.018x11 10.33*
    y17 x3, x8, x9, x10, x11, x12 y17 = 3.304 − 0.307x3 − 0.427x8 − 0.25x9 + 0.97x10 + 0.562x11 − 1.61x12 64.34**
    y18 x8, x10, x11, x12 y18 = 2.008 − 0.15x8 + 0.192x10 + 0.111x11 − 0.686x12 16.41*
    注:x1. 硝态氮;x3. 有效磷;x7. 有效铁;x8. 有效锰;x9. 有效铜;x10. 有效锌;x11. 有机质;x12. pH;y1y2y3y5y6y7y8y10y11y12y14y15y16y17y18分别代表叶片N、P、K、Mg、Fe、Mn、Zn和根系N、P、K、Mg、Fe、Mn、Zn、Cu含量。下同。Notes: x1, nitrate N; x3, available P; x7, available Fe; x8, available Mn; x9, available Cu; x10, available Zn; x11, organic matter; x12, pH; y1, y2, y3, y5, y6, y7, y8, y10, y11, y12, y14, y15, y16, y17, y18 represent the content of leaf N, P, K, Mg, Fe, Mn, Zn and root N, P, K, Mg, Fe, Mn, Zn, Cu. The same as below.
    下载: 导出CSV

    表  6  影响杜香矿质元素含量的土壤因子筛选及回归方程的建立

    Table  6.   Selection of soil factors and establishment of regression equation affecting the Ledum palustre mineral element content

    器官 Organ矿质营养 Mineral nutrient土壤因子 Soil factor回归方程 Regression equationFF value
    叶片 Leaf y1 x9, x11, x12 y1 = 1.004 − 0.003x9 − 0.004x11 − 0.01x12 32.00**
    y3 x6, x9 y3 = 1.147 − 0.125x6 − 0.049x9 5.77*
    y4 x3, x9 y4 = 0.911 + 0.057x3 + 0.013x9 4.45*
    y5 x3, x6, x9, x12 y5 = 1.554 − 0.325x3 − 0.061x6 − 0.155x9 − 0.221x12 476.69**
    y6 x9, x11 y6 = 2.766 + 0.04x9 + 0.073x11 4.21*
    y7 x3, x9, x12 y7 = 1.725 + 0.465x3 + 0.082x9 + 0.384x12 62.53**
    y8 x9 y8 = 2.236 − 0.142x9 4.12*
    y9 x3 y9 = 0.436 − 2.235x3 4.18*
    根系 Root y10 x3, x6, x9, x12 y10 = 1.056 − 0.028x3 − 0.013x6 − 0.01x9 − 0.006x11 − 0.024x12 19.83**
    y11 x3, x9, x12 y11 = 0.732 + 0.076x3 + 0.061x9 + 0.135x12 93.54**
    y12 x3, x9 y12 = 1.116 − 0.113x3 − 0.03x9 4.70*
    y13 x9, x12 y13 = 0.909 + 0.016x9 + 0.014x12 11.77**
    y14 x3, x9, x12 y14 = 1.16 − x3 − 0.053x9-0.069x12 81.78**
    y15 x3, x6, x11 y15 = 2.48 + 0.393x3 − 0.259x6 − 0.148x11 8.91**
    y16 x9 y16 = 2.404 + 0.177x9 5.17*
    y17 x6, x9, x11 y17 = 2.556 + 0.096x6 − 0.122x9 − 0.094x11 14.75**
    y18 x3 y18 = 2.934 − 2.898x3 5.11*
    注:x6. 有效Mg;y4y9y13分别代表叶片Ca、Cu和根Ca含量。Notes: x6, available Mg; y4, y9, y13 represent the content of leaf Ca, Cu and root Ca, respectively.
    下载: 导出CSV
  • [1] Veberic R, Slatnar A, Bizjak J, et al. Anthocyanin composition of different wild and cultivated berry species[J]. LWT-Food Sci Technol, 2015, 60: 509−517. doi: 10.1016/j.lwt.2014.08.033
    [2] Zorenc Z, Veberic R, Stampar F, et al. Changes in berry quality of northern highbush blueberry (Vaccinium corymbosum L.) during the harvest season[J]. Turkish Journal of Agriculture & Forestry, 2016, 40(6): 855−864.
    [3] 石德山, 黄宏, 孙丰, 等. 笃斯越桔生物与生态学特征调查及主要经营技术[J]. 林业调查规划, 2013, 38(5):109−112.

    Huang H, Shi D S, Sun F, et al. Greater Khingan Range blueberry intensive management[J]. Protection Forest Science and Technology, 2013, 38(5): 109−112.
    [4] 王冲, 侯智霞, 宫中志, 等. 大兴安岭地区立地条件对笃斯越桔生长的影响[J]. 经济林研究, 2015, 33(3):81−85.

    Wang C, Hou Z X, Gong Z Z, et al. Effect of site conditions on growth of Vaccinium uliginosum in Greater Khingan Range areas[J]. Nonwood Forest Reasearch, 2015, 33(3): 81−85.
    [5] Marshner H. Marschner’s mineral nutrition of higher plants (3rd edition)[M]. New York: Academic Press, 2011.
    [6] Nestby R, Lieten F, Pivot D, et al. Influence of mineral nutrients on strawberry fruit quality and their accumulation in plant organs[J]. International Journal of Fruit Science, 2006, 5(1): 139−156.
    [7] Brumbarova T, Bauer P, Ivanov R. Molecular mechanisms governing Arabidopsis, iron uptake[J]. Trends in Plant Science, 2015, 20(2): 124−133. doi: 10.1016/j.tplants.2014.11.004
    [8] Picouet P A, Hurtado A, Anna Jofré, et al. Effects of thermal and high-pressure treatments on the microbiological, nutritional and sensory quality of a multi-fruit smoothie[J]. Food and Bioprocess Technology, 2016, 9(7): 1−14.
    [9] 张强, 李兴亮, 李民吉, 等. ‘富士’苹果品质与果实矿质元素含量的关联性分析[J]. 果树学报, 2016, 33(11):212−218.

    Zhang Q, Li X L, Li M J, et al. The correlation analysis between quality characteristics and fruit mineral element contents in ‘Fuji’ apples[J]. Journal of Fruit Science, 2016, 33(11): 212−218.
    [10] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
    [11] Wright I J. Reich P B, Cornelissen J H C, et al. Assessing the generality of global leaftrait relationships[J]. New Phytologist, 2005, 166(2): 485−496. doi: 10.1111/j.1469-8137.2005.01349.x
    [12] Pauli H, Gottfried M, Dullinger S, et al. Recent plant diversity changes on Europe’s mountain summits[J]. Science, 2012, 336: 353−355. doi: 10.1126/science.1219033
    [13] Bagchi R, Gallery R E, Gripenberg S, et al. Pathogens and insect herbivores drive rainforest plant diversity and composition[J]. Nature, 2014, 506: 85−88. doi: 10.1038/nature12911
    [14] 樊星火, 葛红艳, 张参参, 等. 江西省生态公益林典型林分土壤肥力研究状况[J]. 北京林业大学学报, 2018, 40(11):84−92.

    Fan X H, Ge H Y, Zhang C C, et al. Variations in soil fertility of typical non-commercial forest types in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 84−92.
    [15] Drodz P, Seziene V, Pyrzynska K. Mineral composition of wild and cultivated blueberries[J]. Biological Trace Element Research, 2018, 181(1): 173−177. doi: 10.1007/s12011-017-1033-z
    [16] 吴燕, 胡琦鹏, 白永超, 等. 大兴安岭笃斯越桔与伴生植物矿质元素特性分析[J/OL]. 西北农林科技大学学报(自然科学版), 2019 [2019−05−12]. http://kns.cnki.net/kcms/detail/61.1390.S.20190422.1733.008.html.

    Wu Y, Hu Q P, Bai Y C, et al. Characteristics of mineral elements of Vaccinium uliginosum and its associated plants in the Daxing’an Mountains[J/OL]. Journal of Northwest A&F University (Nat. Sci. Ed.), 2019 [2019−05−12]. http://kns.cnki.net/kcms/detail/61.1390.S.20190422.1733.008.html.
    [17] Liu Y, Song X, Han Y, et al. Identification of anthocyanin components of wild Chinese blueberries and amelioration of light- induced retinal damage in pigmented rabbit using whole berries[J]. Journal of Agricultural & Food Chemistry, 2011, 59(1): 356−363.
    [18] 李根柱, 王贺新, 陈英敏, 等. 长白山落叶松林下笃斯越桔群落生物量的空间分布[J]. 生态学杂志, 2012, 31(6):1404−1410.

    Li G Z, Wang H X, Chen Y M, et al. Spatial distribution of the biomass of Vaccinium uliginosum community under Larix olgensis forests in Changbai Mountains, northeast China[J]. Chinese Journal of Ecology, 2012, 31(6): 1404−1410.
    [19] 白永超, 侯智霞, 王冲, 等. 大兴安岭笃斯越桔叶片、根系及根系层土壤养分特性研究[J]. 西北农林科技大学学报(自然科学版), 2017, 45(7):115−124.

    Bai Y C, Hou Z X, Wang C, et al. Nutritional characteristics in leaf, root and root soil of Vaccinium uliginosum in the Greater Xing’an Mountains[J]. Journal of Northwest A&F University (Nat Sci Ed), 2017, 45(7): 115−124.
    [20] 白永超, 陈露, 卫旭芳, 等. 大兴安岭笃斯越桔内生真菌及矿质养分特性分析[J]. 林业科学, 2017, 53(10):50−59. doi: 10.11707/j.1001-7488.20171006

    Bai Y C, Chen L, Wei X F, et al. Analysis on the characteristic of endophytic fungi and mineral nutrient of Vaccinium uliginosum in the Daxing’an Mountains[J]. Scientia Silvae Sinicae, 2017, 53(10): 50−59. doi: 10.11707/j.1001-7488.20171006
    [21] 陈露, 白永超, 侯智霞, 等. 大兴安岭地区笃斯越桔基生枝条矿质养分特性[J]. 西北植物学报, 2017, 37(10):2042−2051. doi: 10.7606/j.issn.1000-4025.2017.10.2042

    Chen L, Bai Y C, Hou Z X, et al. Characteristics of mineral nutrition in basal branches of Vaccinium uliginosum in Daxing’an Mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(10): 2042−2051. doi: 10.7606/j.issn.1000-4025.2017.10.2042
    [22] 白永超, 卫旭芳, 陈露, 等. 笃斯越桔果实、叶片矿质元素和土壤肥力因子与果实品质的多元分析[J]. 中国农业科学, 2018, 51(1):170−181.

    Bai Y C, Wei X F, Chen L, et al. Multivariate analysis of fruit leaf mineral elements, soil fertility factors and fruit quality of Vaccinium uliginosum L.[J]. Scientia Agricultura Sinica, 2018, 51(1): 170−181.
    [23] 王辛辛, 何红波, 胡国庆, 等. 底物添加对森林2个不同演替阶段土壤氨基糖动态的影响[J]. 北京林业大学学报, 2016, 38(4):86−93.

    Wang X X, He H B, Hu G Q, et al. Effects of substrates on dynamics of amino sugars in two different stages of succession in forest soil[J]. Journal of Beijing Forestry University, 2016, 38(4): 86−93.
    [24] 兰士波. 天然笃斯越桔优异种质选择及组织培养技术[J]. 经济林研究, 2010, 28(2):73−77. doi: 10.3969/j.issn.1003-8981.2010.02.014

    Lan S B. Selection of excellent germplasm and tissue culture technique of natural blueberry[J]. Nonwood Forest Reasearch, 2010, 28(2): 73−77. doi: 10.3969/j.issn.1003-8981.2010.02.014
    [25] 常晓丽, 金会军, 于少鹏, 等. 大兴安岭林区不同植被对冻土地温的影响[J]. 生态学报, 2011, 31(18):5138−5147.

    Chang X L, Jin H J, Yu S P, et al. Influence of vegetation on frozen ground temperatures the forested area in the Da xing’anling Mountains, northeastern China[J]. Acta Ecologica Sinica, 2011, 31(18): 5138−5147.
    [26] 郭金停, 韩风林, 布仁仓, 等. 大兴安岭北坡多年冻土区植物群落分类及其物种多样性对冻土融深变化的相应[J]. 生态学报, 2016, 36(21):6834−6841.

    Guo J T, Han F L, Bu R C, et al. Classification of plant communities and species diversity responses to changes in the permafrost depths of the north slope of the Great Khingan Mountain valley of Northeast China[J]. Acta Ecologica Sinica, 2016, 36(21): 6834−6841.
    [27] 周志强, 刘彤, 李云灵, 等. 立地条件差异对天然东北红豆杉(Taxus cuspidata)种间竞争的影响[J]. 生态学报, 2007, 27(6):2223−2229. doi: 10.3321/j.issn:1000-0933.2007.06.010

    Zhou Z Q, Liu T, Li Y L, et al. The influences of site factors on the interspecific competition between Japanese yew (Taxus cuspidata) and other tree species[J]. Acta Ecologica Sinica, 2007, 27(6): 2223−2229. doi: 10.3321/j.issn:1000-0933.2007.06.010
    [28] Zhang Y, Chen H Y, Reich P B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis[J]. Journal of Ecology, 2012, 100(3): 742−749. doi: 10.1111/j.1365-2745.2011.01944.x
    [29] 陈英敏, 王贺新, 李根柱, 等. 长白山落叶松林下笃斯越桔群落土壤的主要矿质养分构成特征[J]. 生态学杂志, 2013, 32(2):325−331.

    Chen Y M, Wang H X, Li G Z, et al. Characteristics of soil mineral nutrient composition in Vaccinium uliginosum community under Larix olgensis forest in Changbai Mountain of northeast China[J]. Chinese Journal of Ecology, 2013, 32(2): 325−331.
    [30] 尹德洁, 苏淑钗, 侯智霞, 等. 大兴安岭地区笃斯越桔种质资源调查[J]. 经济林研究, 2011, 29(2):114−118. doi: 10.3969/j.issn.1003-8981.2011.02.021

    Yin D J, Su S C, Hou Z X, et al. Germplasm resources investigation of wild blueberry in Da Xingan Mountains[J]. Nonwood Forest Research, 2011, 29(2): 114−118. doi: 10.3969/j.issn.1003-8981.2011.02.021
    [31] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2007.

    Bao S D. Soil and agriculture chemistry analysis (3rd edition)[M]. Beijing: China Agriculture Press, 2007.
    [32] Kang J G, Iersel M W V. Nutrition solution concentration affects shoot : root ratio, leaf area ratio, and growth of subirrigated salvia (Salvia splendens)[J]. Hortscience A Publication of the American Society for Horticultural Science, 2004, 39(1): 49−54.
    [33] Yuan Z Y, Chen H Y, Reich P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J/OL]. Nature Communications, 2011(2): 344 [2018−12−10]. https://www_nature.gg363.site/articles/ncomms1346.
    [34] 吴统贵, 吴明, 刘丽, 等. 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化[J]. 植物生态学报, 2010, 34(1):23−28. doi: 10.3773/j.issn.1005-264x.2010.01.005

    Wu T G, Wu M, Liu L, et al. Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 23−28. doi: 10.3773/j.issn.1005-264x.2010.01.005
    [35] Bizabani C, Dames J. Effects of inoculating Lachnum and Cadophora isolates on the growth of Vaccinium corymbosum[J]. Microbiological Research, 2015, 181: 68−74. doi: 10.1016/j.micres.2015.08.005
    [36] 杨秀丽. 大兴安岭兴安落叶松森林生态系统菌根及其多样性研究[D]. 呼和浩特: 内蒙古农业大学, 2010.

    Yang X L. Mycorrhizal Diversity in the Larix gmelinii forest ecosystems of Da Hinggan Ling Mountains[D]. Hohhot: Inner Mongolia Agriculture University, 2010.
    [37] 张斌. 内蒙古地区土生空团菌菌根多样性调查及其PCR-RFLP分析[D]. 呼和浩特: 内蒙古农业大学, 2007.

    Zhang B. Mycorrhizal diversity investigation of Cenococcum geophilum Fr. in Inner Mongolia and its PCR- RFLP analyse[D]. Hohhot: Inner Mongolia Agriculture University, 2007.
    [38] Vandenkoornhuyse P, Ridgway K P, Watson I J, et al. Co-existing grass species have distinctive arbuscular mycorrhizal communities[J]. Molecular Ecology, 2003, 12: 3085−3095. doi: 10.1046/j.1365-294X.2003.01967.x
    [39] Mayor J R, Mack M C, Schuur E A G. Decoupled stoichiometric, isotopic, and fungal responses of an ectomycorrhizal black spruce forest to nitrogen and phosphorus additions[J]. Soil Biology and Biochemistry, 2015, 88: 247−256. doi: 10.1016/j.soilbio.2015.05.028
    [40] 曹焱, 刁秋实, 翁海龙, 等. 野生笃斯越桔种质资源保存效果研究[J]. 安徽农业科学, 2015, 43(19):232−234. doi: 10.3969/j.issn.0517-6611.2015.19.082

    Cao Y, Diao Q S, Weng H L, et al. Study on the effect of preservation of germplasm resources of wild Vaccinium uliginosum L.[J]. Journal of Anhui Agri Sci, 2015, 43(19): 232−234. doi: 10.3969/j.issn.0517-6611.2015.19.082
    [41] Major J E, Johnsen K H, Barsi D C, et al. Stem biomass, C and N partitioning and growth efficiency of mature pedigreed black spruce on both a wet and a dry site[J]. Forest Ecology and Management, 2013, 3(10): 495−507.
    [42] Milosevic T, Milosevic N. Apple fruit quality, yield and leaf macronutrients content as affected by fertilizer treatment[J]. Journal of Soil Science & Plant Nutrition, 2015, 15(1): 76−83.
    [43] Vreca P. Carbon cycling at the sediment-water interface in a eutrophic mountain lake (Jezero na Planini pri Jezeru, Slovenia)[J]. Organic Geochemistry, 2003, 34(5): 671−680. doi: 10.1016/S0146-6380(03)00022-6
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  962
  • HTML全文浏览量:  537
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-18
  • 修回日期:  2019-06-04
  • 网络出版日期:  2019-09-28
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回