高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雌雄异株植物鼠李生殖分配与生殖耗费补偿机制

黄云浩 辛本花 王娟

引用本文:
Citation:

雌雄异株植物鼠李生殖分配与生殖耗费补偿机制

    作者简介: 黄云浩。主要研究方向:生殖生态学。Email:365741419@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院.
    通讯作者: 王娟,副教授。主要研究方向:生殖生态学。Email:297031335 @qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院
  • 中图分类号: S718.45

Reproductive allocation and compensation mechanism for reproductive costs of dioecious shrub Rhamnus davurica

  • 摘要: 目的 检验鼠李个体大小对其生殖分配的影响,比较相同径级雌雄鼠李生殖分配的差异,探讨鼠李可能存在的生殖耗费补偿机制, 对今后雌雄异株植物生理生态学方面的研究提供论据支撑。方法 在鼠李的花期和果期选择当年进行繁殖活动且生长状况与立地条件类似的植株作为调查样本,对每株鼠李的性别、叶生物量、花生物量(花期)、果生物量(果期雌株)进行了调查,通过Li-6400 便携式光合作用测定仪比较不同性别鼠李叶片的光合能力。结果 (1) 大径级鼠李的生殖生物量与营养生物量均显著大于小径级鼠李(P < 0.05)。(2) 相同径级鼠李雌株的生殖生物量均显著高于雄株(P < 0.05),雌雄鼠李的营养生物量没有显著差异(P > 0.05)。(3) 当光强处于500 ~2 000 μmol/(m2∙s)时,鼠李雌株单位叶面积的光合速率大于雄株。结论 研究区域内鼠李的个体大小对其生殖分配有显著影响,这是不同个体可利用资源总量不同造成的。鼠李雌株相较于雄株,并没有因较高的生殖耗费而缩减对营养生长的投入。鼠李雌株通过光合作用获得了更多的可利用资源来满足其生殖和营养生长过程需要,这种较强的光合能力是雌株在较高繁殖压力下进化出的一种生殖耗费补偿机制。
  • 图 1  不同个体大小植株的生殖生物量与营养生物量

    Figure 1.  Reproductive biomass and vegetative biomass of sample tree for different diameter levels

    图 2  鼠李雌雄植株叶片光响应曲线

    Figure 2.  Differences of net photoshynthesis rate between two sexs

    表 1  个体大小对生殖生物量和营养生物量的方差分析

    Table 1.  Results of ANOVA examining the effect of tree size on the reproductive biomass and vegetative biomass

    项目 Item 生殖生物量 Reproductive biomass 营养生物量 Vegetative biomass
    F P F P
    个体大小 Individual size 10.17 0.001 92** 6.349 0.013 4*
    残差 Residuals 2.89 0.753
    下载: 导出CSV

    表 2  不同个体大小的雌雄植株各组分生物量

    Table 2.  Biomass of different compoents and reproductive ratio of sample tree for different genders and tree size

    项目 Item 小径级雌株
    Small diameter female plant
    小径级雄树
    Small diameter male plant
    大径级雌株
    Large diameter female plant
    大径级雄树
    Large diameter male plant
    胸径 DBH/cm 3.39 ± 0.14b 3.17 ± 0.10b 4.90 ± 0.20a 5.16 ± 0.18a
    花生物量 Flower biomass/g 2.10 ± 0.50a 4.38 ± 1.55a 5.82 ± 2.07a 4.66 ± 1.07a
    生殖生物量 Reproductive biomass/g 23.86 ± 9.16a 4.38 ± 1.55b 41.18 ± 16.26a 4.66 ± 1.07b
    营养生物量 Vegetative biomass/g 264.72 ± 72.51a 279.74 ± 42.46a 407.46 ± 109.55a 318.35 ± 51.88a
    注:数据为平均值 ± 标准误,同一行字母不同者表示差异显著(P < 0. 05)。Notes: valules are mean ± SE, data followed by different letters within a row differ significantly (P < 0. 05).
    下载: 导出CSV
  • [1] Vandepitte K, Honnay O, De Meyer T, et al. Patterns of sex ratio variation and genetic diversity in the dioecious forest perennial Mercurialis perennis[J]. Plant Ecology, 2010, 206(1): 105−114. doi: 10.1007/s11258-009-9627-y
    [2] Zhang D Y, Jiang X H. Size-dependent resource allocation and sex allocation in herbaceous perennial plants[J]. Journal of Evolutionary Biology, 2002, 15: 74−83. doi: 10.1046/j.1420-9101.2002.00369.x
    [3] Obeso J R. The costs of reproduction in plants[J]. New Phytologist, 2002, 155: 321−348. doi: 10.1046/j.1469-8137.2002.00477.x
    [4] Silvertown J, Dodd M. The demographic cost of reproduction and its consequences in balsamfir(Abies balsamea)[J]. American Naturalist, 1999, 154: 321−332. doi: 10.1086/303238
    [5] Liu F, Chen J M, Wang Q F. Trade-offs between sexual and asexual reproduction in a monoecious species Sagittaria pygmaea (Alismataceae): the effect of different nutrient levels[J]. Plant Systematics and Evolution, 2009, 277: 61−65. doi: 10.1007/s00606-008-0103-2
    [6] Teitel Z, Pickup M, Field D L. The dynamics of resource allocation and costs of reproduction in a sexually dimorphic, wind-pollinated dioecious plant[J]. Plant Biology, 2016, 18: 98−103. doi: 10.1111/plb.12336
    [7] Hartemink N, Jongejans E, De Kroon H. Flexible life history responses to flower and rosette bud removal in three perennial herbs[J]. Oikos, 2004, 105: 159−167. doi: 10.1111/j.0030-1299.2004.12784.x
    [8] 张大勇, 白伟宁, 任文伟, 等.植物生活史进化与繁殖生态学[M]. 北京: 科学出版社, 2004.Zhang D Y, Bai W N, Ren W W, et al. Plant life-history evolution and reproductive ecology[M]. Beijing: Science Press, 2004.
    [9] Renner S S, Ricklefs R E. Dioecy and its correlates in the flowering plants[J]. American Journal of Botany, 1995, 82: 596−606. doi: 10.1002/j.1537-2197.1995.tb11504.x
    [10] Lloyd D G, Webb C J. Secondary sex characters in plants[J]. Botanical Review, 1977, 43: 177−216. doi: 10.1007/BF02860717
    [11] Cipollini M L, Whigham D F. Sexual dimorphism and cost of reproduction in the dioecious shrub Lindera benzoin (Lauraceae)[J]. American Journal of Botany, 1994, 81: 65−75. doi: 10.1002/j.1537-2197.1994.tb15410.x
    [12] Bañuelos M J, Obeso J R. Resource allocation in the dioecious shrub Rhamnus alpinus: the hidden costs of reproduction[J]. Evolutionary Ecology Research, 2004, 6: 397−413.
    [13] Ueno N, Kanno H, Seiwa K. Sexual differences in shoot and leaf dynamics in the dioecious tree, Salix sachalinensis[J]. Canadian Journal of Botany, 2006, 84: 1852−1859. doi: 10.1139/b06-142
    [14] Ehrlen J, Van Groenendael J. Stroage and the delayed costs of reproduction in the understorey perennial lathyrus vernus[J]. Journal of Ecology, 2001, 89: 237−246. doi: 10.1046/j.1365-2745.2001.00546.x
    [15] Sakai A K, Burris T A. Growth in male and female aspen clones: a twenty-five-year longitudinal study[J]. Ecology, 1985, 66: 1921−1927. doi: 10.2307/2937388
    [16] Bazzaz F A, Ackerly D D, Reekie E G. Reproductive allocation in plants[M]. New York: CABI Publishing, 2000.
    [17] Fox J F, Stevens G C. Costs of reproduction in a willow-experimental responses vs natural variation[J]. Ecology, 1991, 72: 1013−1023. doi: 10.2307/1940601
    [18] Delph L F, Knapczyk F N, Taylor D R. Among-population variation and correlations in sexually dimorphic traits of Silene latifolia[J]. Journal of Evolutionary Biology, 2002, 15: 1011−1020. doi: 10.1046/j.1420-9101.2002.00467.x
    [19] Tozawa M, Ueno N, Seiwa K. Compensatory mechanisms for reproductive costs in the dioecious tree Salix integra[J]. Botany, 2009, 87: 315−323. doi: 10.1139/B08-125
    [20] Mandy L S, Todd N R, Sarah M E. Sex-specific morphological and physiological differences in the moss Ceratodon purpureus (Dicranales)[J]. Annals of Botany, 2017, 120: 845−854. doi: 10.1093/aob/mcx071
    [21] 朱燕艳, 王娟, 赵秀海, 等. 雄全异株植物白牛槭功能性状与碳素含量关联性研究[J]. 西北植物学报, 2015, 35(10):2089−2095. doi: 10.7606/j.issn.1000-4025.2015.10.2089Zhu Y Y, Wang J, Zhao X H, et al. Correlation of functional traits and carbon contents in androdioecy plant Acer mandshuricum[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(10): 2089−2095. doi: 10.7606/j.issn.1000-4025.2015.10.2089
    [22] Prinsley R T, Leegood R C. Factors affecting photosynthetic induction in spinach leaves[J]. Biochim Biophys Acta, 1986, 849: 244−253. doi: 10.1016/0005-2728(86)90031-9
    [23] Shiba A, Kudo G, Notes A. Size-dependent sex allocation and reproductive investment in a gynodioecious shrub[J]. Aob Plants, 2016, 9: 89.
    [24] Barradas M C D, Zunzunegui M, Collantes M. Gender-related traits in the dioecious shrub Empetrum rubrum in two plant communities in the Magellanic Steppe[J]. Acta Oecologica, 2014, 60(10): 40−48.
    [25] Hesse E, Pannell J R. Sexual dimorphism in a dioecious population of the wind-pollinated herb Mercurialis annua: the interactive effects of resource availability and competition[J]. Annals of Botany, 2011, 107: 1039−1045. doi: 10.1093/aob/mcr046
    [26] Cornelissen T, Stiling P. Sex-biased herbivory: a meta-analysis of the effects of gender on plant-herbivore interactions[J]. Oikos, 2005, 111(3): 488−500. doi: 10.1111/j.1600-0706.2005.14075.x
    [27] Rocheleau A F, Houle G. Different cost of reproduction for the males and females of the rare dioecious shrub Corema conradii(Empetraceae)[J]. American Journal of Botany, 2001, 88: 659−666. doi: 10.2307/2657066
    [28] Leigh A, Cosgrove M J, Nicotra A B. Reproductive allocation in a gender dimorphic shurb: anomalous females investment in Gynatrix pulchella[J]. Journal of Ecology, 2006, 94(6): 1261−1271. doi: 10.1111/j.1365-2745.2006.01164.x
    [29] Zhang C Y, Zhao X H, Gao L S, et al. Gender, neighboring competition and habitat effects on the stem growth in dioecious Fraxinus mandshurica trees in a northern temperate forest[J]. Annals of Forest Science, 2009, 66(8): 812. doi: 10.1051/forest/2009068
    [30] Cedro A, Iszkuło G. Do females differ from males of European yew (Taxus baccata L.) in dendrochronological analysis?[J]. Tree-Ring Research, 2011, 67: 3−11. doi: 10.3959/2009-9.1
    [31] Rovere A E, Aizen M A, Kitzberger T. Growth and climatic response of male and female trees of Ausrocedrus chilensis, a dioecious conifer from the temperate forests of southern south America[J]. Ecoscience, 2003, 195: 203.
    [32] Popp J W, Reinartz J A. Sexual dimorphism in biomass allocation and clonal growth of Xanthoxylum americanum[J]. American Journal of Botany, 1988, 75: 1732−1741. doi: 10.1002/j.1537-2197.1988.tb11249.x
    [33] Correia O, Barradas M. Ecophysiological differences between male and female plants of Pistacia lentiscus[J]. Plant Ecology, 2000, 149: 131−142. doi: 10.1023/A:1026588326204
    [34] Obeso J R, Alvarez-Santullano M. Sex ratio, size distributions, and sexual dimorphism in the dioecious tree Ilex aquifoium (Aquifoliaceae)[J]. American Journal of Botany, 1998, 85: 1602−1608. doi: 10.2307/2446488
    [35] Dawson T E, Ehleringer J R. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in box elder, Acer negundo[J]. Ecology, 1993, 74: 798−815. doi: 10.2307/1940807
    [36] Gehring J L, Monson R K. Sexual differences in gas exchange and response to environmental stress in dioecious Silene latifolia (Caryophyllaceae)[J]. American Journal of Botany, 1994, 81: 166−174. doi: 10.1002/j.1537-2197.1994.tb15426.x
  • [1] 赵海艳宋子龙徐萌黄云浩张新娜王娟 . 雌雄异株植物簇毛槭繁殖代价延迟效应研究. 北京林业大学学报, 2019, 41(8): 84-93. doi: 10.13332/j.1000-1522.20180360
    [2] 赵天宏王美玉赵艺欣郭丹何兴元付士磊 , . 大气O3浓度升高对城市油松光合作用的影响. 北京林业大学学报, 2009, 6(1): 31-36.
    [3] 张嘉桐关颖慧司莉青彭霞薇孟丙南周金星 . Pb2+、Cd2+复合胁迫对桑树光合作用的影响. 北京林业大学学报, 2018, 40(4): 16-23. doi: 10.13332/j.1000-1522.20170332
    [4] 赵海燕魏宁孙聪聪白宜琳郑彩霞 . NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响. 北京林业大学学报, 2018, 40(11): 28-41. doi: 10.13332/j.1000-1522.20180258
    [5] 赵娟宋媛毛子军 . 蒙古栎幼苗光合作用以及叶绿素荧光对温度和降水交互作用的响应. 北京林业大学学报, 2013, 10(1): 64-71.
    [6] 赵延霞骆有庆宗世祥王荣罗红梅 , . 不同沙棘品种雌雄株叶片解剖结构及抗旱性比较. 北京林业大学学报, 2012, 9(6): 34-41.
    [7] 林霞郑坚陈秋夏孔强叶延龄 . NaCl胁迫对无柄小叶榕光合作用和抗氧化酶活性的影响. 北京林业大学学报, 2011, 8(4): 70-74.
    [8] 张鹏翀胡增辉沈应柏高荣孚 . 不同损伤对合作杨光合特性的影响. 北京林业大学学报, 2010, 7(1): 35-38.
    [9] 谢寅峰林侯蔡贤雷周坚丁雨龙 . 镧对鹅毛竹开花后光合特性的影响. 北京林业大学学报, 2008, 5(5): 7-12.
    [10] 周志强彭英丽孙铭隆张玉红刘彤 . 不同氮素水平对濒危植物黄檗幼苗光合荧光特性的影响. 北京林业大学学报, 2015, 12(12): 17-23. doi: 10.13332/j.1000-1522.20150281
    [11] 应叶青郭璟魏建芬邹奕巧胡冬春方伟 . 水分胁迫下毛竹幼苗光合及叶绿素荧光特性的响应. 北京林业大学学报, 2009, 6(6): 128-133.
    [12] 杨博文孙海龙吴楚 . 低磷胁迫对水曲柳幼苗光合速率与氮素同化的影响. 北京林业大学学报, 2015, 12(8): 18-23. doi: 10.13332/j.1000-1522.20140417
    [13] 江锡兵李博张志毅马开峰何占国刘承友 . 美洲黑杨与大青杨杂种无性系苗期光合特性研究. 北京林业大学学报, 2009, 6(5): 151-154.
    [14]