DOI:10.12171/j.1000-1522.20200173

基于贝叶斯模型平均法的森林火灾预测模型构建研究 ——以云南省大理州为例

白海峰¹ 刘晓东¹ 牛树奎¹ 何亚东²
 (1.北京林业大学生态与自然保护学院,北京100083;2.云南大学数学与统计学院,云南昆明650504)

摘要:【目的】本文基于贝叶斯模型平均法,结合二项逻辑斯蒂回归模型,构建云南省大理州森林火灾发生预测模型,以期 提高林火预测精度,为研究地区林火管理提供技术支持。【方法】利用 2000—2013 年大理州林火数据及对应的气象数 据,分别运用二项逻辑斯蒂回归模型和贝叶斯模型平均法,对该地区森林火灾对气象因子的响应进行实证分析。二项逻 辑斯蒂回归模型为单一模型,建模前通过对各解释变量进行多重共线性检验,剔除有显著共线性的解释变量,然后通过 逐步回归法,筛选最终变量并进行参数拟合。贝叶斯平均模型为组合模型,基于贝叶斯模型平均法建模时,采用奥卡姆窗 的方法来适当调整模型空间,并以 5 个最优模型的后验概率作为权重进行加权建模。将全样本数据随机分成 80% 的训 练样本和 20% 的测试样本,基于训练样本建立模型,对测试样本进行预测,通过对比观测值和预测值计算模型的准确 率。【结果】通过二项逻辑斯蒂模型拟合,优度为 0.783,预测精度为 0.718。通过贝叶斯平均模型拟合,优度为 0.868,预测 精度为 0.807。2 个模型预测结果对比显示,在训练集中,贝叶斯平均模型的预测准确率比二项逻辑斯蒂回归模型高 9.3%;在测试集中,贝叶斯平均模型的预测准确率比二项逻辑斯蒂回归模型高 8.9%。【结论】在基于气象因子的大理州林 火发生预测模型构建研究中,贝叶斯平均模型的拟合优度和预测精度均高于二项逻辑斯蒂模型,表明贝叶斯模型平均法 具有一定的现实应用意义,可用于提高研究地区林火预测精度,有利于森林火灾的决策管理。

关键词: 大理州;森林火灾;气象因子;贝叶斯模型平均法;逻辑斯蒂回归

中图分类号: S762.2 文献标志码: A 文章编号: 1000-1522(2021)05-0044-09

引文格式: 白海峰, 刘晓东, 牛树奎, 等. 基于贝叶斯模型平均法的森林火灾预测模型构建研究——以云南省大理州为例 [J]. 北京林业大学学报, 2021, 43(5): 44-52. Bai Haifeng, Liu Xiaodong, Niu Shukui, et al. Construction of forest fire prediction model based on Bayesian model averaging method: taking Dali Prefecture, Yunnan Province of southwestern China as an example[J]. Journal of Beijing Forestry University, 2021, 43(5): 44-52.

Construction of forest fire prediction model based on Bayesian model averaging method: taking Dali Prefecture, Yunnan Province of southwestern China as an example

Bai Haifeng¹ Liu Xiaodong¹ Niu Shukui¹ He Yadong²

School of Ecology and Nature Reserves, Beijing Forestry University, Beijing 100083, China;
 College of Mathematics and Statistics, Yunnan University, Kunming 650504, Yunnan, China)

Abstract: [**Objective**] Based on the Bayesian model averaging method and binomial Logistic regression model, this paper constructs a forest fire prediction model in Dali Prefecture, Yunnan Province of southwestern China, so as to improve the prediction accuracy of forest fire and provide technical support for forest fire management in the study area. [**Method**] Using the forest fire data and corresponding meteorological data of Dali Prefecture from 2000 to 2013, the binomial Logistic regression model and the Bayesian model averaging method were used to empirically analyze the response of forest fires to

收稿日期: 2020-06-19 修回日期: 2021-01-07

基金项目:国家自然科学基金项目(31770696)。

第一作者:白海峰。主要研究方向:林火生态。Email: haifengbai@sina.com 地址: 100083 北京市海淀区清华东路 35 号北京林业大学生态 与自然保护学院。

责任作者:刘晓东,博士,教授。主要研究方向:林火生态。Email:xd_liu@bjfu.edu.cn 地址:同上。

meteorological factors in this area. The binomial Logistic regression model is a single model. Before modeling, the explanatory variables with significant collinearity were eliminated by multicollinearity test. Then, the final variables were screened by stepwise regression method and the parameters were fitted. The Bayesian average model is a combined model. When modeling based on the Bayesian model averaging method, the Occam's window method was used to appropriately adjust the model space, and the posterior probabilities of the five optimal models were used as weights for weighted modeling. In this paper, the all sample data were randomly divided into 80% training samples and 20% test samples. A model was built based on the training samples to predict the test samples. The accuracy of the model was calculated by comparing the observations and predictions. [Result] Fitting through the binomial Logistic model, the results showed that: the model fitting goodness was 0.783, and the prediction accuracy was 0.718; through the Bayesian average model fitting, the results showed that: the model fitting goodness was 0.868, and the prediction accuracy was 0.807. The comparison of the prediction results of the two models showed that: in the training set, the prediction accuracy of the Bayesian average model was 9.3% higher than that of the binomial Logistic regression model; and in the test set, the former was 8.9% higher than the latter. [Conclusion] In the prediction model of forest fire occurrence in Dali Prefecture based on meteorological factors, the goodness of fit and prediction accuracy of Bayesian average model were higher than that of binomial Logistic model, indicating that the Bayesian model averaging method had certain practical application significance. It can be used to improve the prediction accuracy of forest fire in the study area, which is beneficial to the decision management of forest fire.

Key words: Dali Prefecture; forest fire; meteorological factor; Bayesian model averaging method; Logistic regression

近年来,全球范围内森林火灾的发生频次不断 增大,不仅威胁着人们的生命财产安全,同时还造成 巨大的资源损失和环境破坏。2017年为欧洲有史以 来遭受森林火灾侵袭最为严重的年份之一,火灾对 西班牙、葡萄牙和意大利等国均造成了灾难性的事 件[1], 2019—2020年火险期澳大利亚的野火持续了 5个月,引起了全球性持续关注[2-3]。我国也是世界 上森林火灾发生较为严重的国家之一,2000—2015 年发生森林火灾的次数平均为7632次/a,火场总 面积平均为 230 622 hm²/a, 受害森林面积平均为 94 864 hm²/a,人员伤亡平均为 111 人/a^[4]。在全球气 候变暖的背景下,火活动将增加,火险期延长,野火 发生概率升高[5-8],准确估计火灾概率对于减少林火 的负面影响起着至关重要的作用[9-11]。因此,准确的 森林火灾发生预测模型的构建是林火发生预测的重 要手段,对防控森林火灾具有十分重要的意义。

随着对森林火灾发生的认识不断深入,从早期 的线性模型到计数模型,森林火灾发生与气象因子 的关系模型结构日趋复杂,然而这种模型结构的复 杂化不能降低林火发生与气象因子关系模型的不确 定性。而贝叶斯模型平均法则是近年来文献报告中 处理模型不确定性一个很好的方法,虽目前尚未将 其应用于森林火灾预测,但在其他方面如医疗、水 文、渔业的应用^[12-15]表明,贝叶斯模型平均算法具有 较高的预测效果和模型稳定性。云南省地处我国西南,是我国三大林区之一,但同时也是我国的林火高发区。由于受地理位置、地形地势、气候以及森林资源分布和人为活动等影响,云南的森林火灾较为严重^[16]。因此,本文基于云南省大理州林火数据和气象数据,运用R统计软件,分别应用逻辑斯蒂回归模型和贝叶斯模型平均法建立林火发生的单一模型和组合模型,通过不同模型拟合结果的对比分析,判断贝叶斯模型平均法在构建区域林火预测模型中的适用性。

1 研究区概况

大理州地处云南省中部偏西,地理位置 98°52′~ 101°03′E、24°41′~26°42′N,总面积 2.945 9万 km², 其中山区面积占总面积的 93.4%。地势西北高,东南 低,平均海拔 2 090 m,地貌复杂多样,土壤类型以紫 色土和红壤土为主。气候属于低纬度高原季风气候, 立体气候特点显著,干湿季节分明,年温差小、日温 差大。年均气温 15.7 ℃,年均降水量 836 mm,年日 照时数 2 072~2 693 h,无霜期 225~345 d。大理州 森林面积 173.37 万 hm²,森林覆盖率 61.22%,森林 蓄积量 1.1376 亿 m³,主要优势树种有云南松(Pinus yunnanensis)、华山松(P. armandii)、铁杉(Tsuga chinensis)、冷杉(Abies fabri)、马尾杉(Phlegmariurus phlegmaria)、思茅松(Pinus kesiya)等。

大理州属于森林火灾高发区,该地区冬春季气 温高、降水少、风力大,极易发生森林火灾^[17]。据统 计,2000—2013年间,大理州共计发生森林火灾 552次(图 1),过火面积高达 11 027 hm²,其中有林 地面积为 7 002 hm²。由于大理州森林火灾集中发生 于 1—6 月份(551 次),因此本文以该时段为研究对 象,选取了该时段内的区域林火数据和气象数据。

Fig. 1 Distribution of fire points in the study area from 2000 to 2013

2 数据来源与处理

2.1 数据来源

本文森林火灾数据来自云南省大理州森林防火 指挥部办公室2000—2013年林火发生情况数据,包 括火灾发生时间、起火地点、起火原因、过火面积等。

气象数据来自国家气象科学数据中心基本气象 数据,为大理气象站(区站号:56751)2000—2013年 1—6月的逐日气象数据。本文通过对气象数据进行 预处理,剔除掉缺测数据过多的气象因子,保留 11个气象因子:日平均风速(m/s)、日最大风速 (m/s)、日照时数(h)、日平均气压(kPa)、日平均气温 (℃)、日最高气温(℃)、日最低气温(℃)、日平均水 汽压(kPa)、日平均相对湿度(%)、日最小相对湿度 (%)、前1日20:00—20:00降雨量(mm)。

另外,考虑到森林火灾的发生不仅与当时的气象条件有关,而且还与前期气象条件密切相关,气象因子对林火发生的影响具有一定滞后性,因此引入加拿大森林火险天气指标系统(fire weather index, FWI)。FWI指标体系以时滞——平衡含水率理论为基础,将气象条件和可燃物含水率有机地联系起来,通过天气条件的变化计算可燃物含水率的变化,进 而确定潜在火险等级,这在一定程度上代表了当前 气象条件与前期气象条件的综合效应,因此本文将 FWI指标体系看成气象因子,与11个气象因子共同 设为自变量,进行森林火灾发生概率模型构建。

2.2 数据处理

本文以火灾发生日气象数据为自变量,因变量 Y=1,同时在构建判别模型时,需要创建一定比例的 非火点(Y=0)作为对照。本文按1:1比例选取对照 点^[18-19],对照非火点创建过程中遵循时间和空间上 的完全随机^[20]。

本文将全样本数据随机分成 80% 的训练样本 和 20% 的测试样本,基于训练样本建立模型,对测 试样本进行预测,通过对比观测值和预测值计算出 模型的准确率。本文运用 R 软件中的 glm 函数进行 二项逻辑斯蒂回归的计算,逐步回归是通过 R 软件 中的 step.glm 函数实现的,贝叶斯模型平均算法是 通过 R 软件中的 BMA、MASS 程序包实现的。

3 研究方法

3.1 林火预测模型选择

逻辑斯蒂回归模型(Logistic regression model, LR)是目前国内外普遍运用的林火预测模型^[18,21-23]。

将是否发生火灾的概率 p 设定为因变量 Y(Y=1)为发生林火, Y=0 为未发生林火), 各气象因子设定为 自变量 X, 建立 Logistic 回归模型, 模型表达式如下:

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n)}}$$
(1)

式中:p为林火发生的概率; $\beta_i(i = 1, 2, \dots, n)$ 为模型 中影响林火发生的自变量 $X_i(i = 1, 2, \dots, n)$ 的逻辑 斯蒂回归系数,n为模型自变量的个数。

3.2 贝叶斯模型平均法

贝叶斯模型平均法(Bayesian model averaging, BMA)是由 Rafery等^[24]提出的一种利用多模型组合 进行概率预报的统计方法。BMA采用贝叶斯公式, 将带有先验信息的未知参数分布与描述对象新信息 的似然函数结合,获得对象的后验分布,基于后验分 布对对象进行统计和推断,从而不断完善对对象的 认识^[14]。

BMA 是通过估算潜在变量 X 的所有可能组合的模型并在需要的组合上构建加权平均来解决问题的。通常情况下,根据已有的主观信息指定先验分布,以模型后验概率(posterior model probabilities, PMP)为权重对可能的单项模型进行加权平均,以解释变量的后验包含概率(posterior inclusion probabilities, PIP)大小作为选择解释变量的客观标准^[15]。

在 Logistic 回归模型中,基于 BMA 方法可得到 的每个解释变量系数 β_i 的后验概率,即为解释变量 的后验包含概率 PIP,并对参数向量 $\theta(\beta_0, \beta_1, \dots, \beta_n)$ 进行相应的统计推断,可以构建出 BMA-Logistic 回 归模型,具体情况如下。

单个模型的后验概率表达式为:

$$P(M_r|D) = \frac{P(D|M_r)P(M_r)}{\sum_{j=1}^{k} P(D|M_j)P(M_j)}$$
(2)
$$P(D|M_r) = \int P(D|\theta_r, M_r)P(\theta_r|M_r) d\theta_r$$
(3)

式中: M_r 代表模型空间D中的第r个模型,k表示模型的个数, $P(M_r)$ 为模型 M_r 的先验概率分布, $P(D|M_r)$ 为模型 M_r 对应的似然函数积分, θ_r 表示模型 M_r 的参数, $P(\theta_r|M_r)$ 表示模型 M_r 所对应的参数先验概率分布, $P(D|\theta_r,M_r)$ 表示模型 M_r 所对应的似然函数。

根据贝叶斯公式,参数θ的后验密度分布是模型 空间条件下参数θ后验密度分布的加权平均值,权重 为模型后验概率P(M_r|D)。BMA还需要指定模型先 验概率和参数的先验信息,即设定P(M_r)。一般情 况,可以设定相等的模型先验概率,即设定均匀分布 的模型空间,而对于参数的先验信息,可以设定单位 信息先验(unit information prior)。

3.3 模型的检验

本文采用 ROC(receiver operating characteristic) 曲线和 AUC(area under curve)对预测效果进行检 验。AUC 作为数值可以直观的评价分类器的好坏, 值越大分类效果越好。一般认为,AUC 值等于 0.5 时相当于一个完全的随机预测,在(0.5,0.7] 区 间,准确性较低;在(0.7,0.8] 区间,准确性中等;在 (0.8,0.9] 区间,准确性较好;在(0.9,1] 区间,具有 高准确性^[25-26]。

通过 ROC 曲线分析法可以得到模型的敏感度 值和特异性值,通过约登指数(Youden index)公式 (约登指数=敏感度值+特异性值-1)可以计算分 类阈值(cut-off point),进而对预测概率进行分类。 如果计算得到的预测概率值大于该阈值则认为会发 生林火,小于该阈值则认为不会发生林火^[25,27]。

4 结果与分析

根据大理州 2000—2013 年 1—6 月火点数据, 按 1:1 比例选取对照点, 应用 SPSS 软件对火点和对照点组成的全样本数据进行基本统计(表 1)。

4.1 逐步逻辑斯蒂回归模型分析

4.1.1 多重共线性检验

多重共线性(multicollinearity)是指线性回归模型中解释变量之间存在某种密切相关关系。多重共线性是普遍存在的,通常情况下,适度的共线性不成问题,但严重的共线性会导致解释变量的显著性检验失去意义及模型估计产生一定偏差甚至无效。因此在涉及多个解释变量时,应首先对其进行多重共线性检验。本文运用方差膨胀因子(variance inflation factor, VIF)诊断法对解释变量进行多重共线性检验。通常,VIF 值越大,说明多重共线性就越显著,一般认为 VIF 大于 10 时,解释变量之间具有显著的共线性^[28]。经检验,WIN_avg、WIN_max、SSD、PRS_avg、Tmax、Tmin、RH_avg、RH_min、FFMC、ISI 共计10 个气象因子的 VIF 小于 10(表 2),进入模型拟合阶段。

4.1.2 逐步逻辑斯蒂回归模型的拟合

基于训练样本,运用R软件中的glm函数对大 理州火点和对照点以及WIN_avg、WIN_max、SSD、 PRS_avg、Tmax、Tmin、RH_avg、RH_min、FFMC、 ISI 共计10个气象因子数据进行Logistic 模型拟合, 通过逐步回归法,逐步剔除模型中不显著的变量,得 到的最终变量为WIN_max、Tmax、Tmin、RH_avg、 RH_min、FFMC共计6个变量,选择最终变量进行 模型拟合,来构建Step_Logistic(Step_LR)模型,拟 合参数如表3所示。经逐步回归筛选出的最终变量

	-				
模型变量 Model variable	变量代码 Variable code	最小值 Min. value	最大值 Max. value	均值 Mean	标准差 SD
日平均风速 Daily average wind speed/(m·s ⁻¹)	WIN_avg	0.80	10.80	3.64	1.38
日最大风速 Daily maximum wind speed/(m·s ⁻¹)	WIN_max	3.10	20.60	9.21	2.35
日照时数 Sunshine hour/h	SSD	2.20	12.20	9.24	1.80
日平均气压 Daily average pressure/kPa	PRS_avg	79.33	80.75	80.05	0.22
日平均气温 Daily average temperature/℃	Tavg	4.20	24.10	15.88	3.34
日最高气温 Daily maximum temperature/℃	Tmax	12.10	31.00	23.34	3.17
日最低气温 Daily minimum temperature/℃	Tmin	-0.80	18.20	8.59	3.92
日平均水汽压 Daily average water vapor pressure/kPa	VP_avg	0.27	1.68	0.71	0.21
日平均相对湿度 Daily average relative humidity/%	RH_avg	21.00	72.00	41.46	8.27
日最小相对湿度 Daily minimum relative humidity/%	RH_min	6.00	46.00	18.78	5.71
前一日20:00—20:00降雨量 20:00 the day before-20:00 precipitation/mm	Pre	0	3.00	0.03	0.23
细小可燃物湿度码 Fine fuel moisture code	FFMC	79.33	97.56	94.6	1.70
粗腐殖质湿度码 Duff moisture code	DMC	18.18	342.68	113.29	52.55
干旱码 Drought code	DC	61.91	660.71	373.32	98.28
初始蔓延指数 Initial spread index	ISI	1.44	15.63	10.01	1.99
累积指数 Build-up index	BUI	23.92	339.76	128.54	48.63
火险天气指数 Fire weather index	FWI	5.35	49.05	33.47	7.14
火点 Fire point	Fire	0	1	0.50	0.50

表1 模型变量的基本统计描述

Tab. 1 Basic statistical description of model variables

注:各模型变量样本数为1 102。Note: sample number of each model variable is 1 102.

表 2 变量的多重共线性检验

Tab. 2 Multicollinearity test of variables

变量 Variable	WIN_avg	WIN_max	SSD	PRS_avg	Tmax	Tmin	RH_avg	RH_min	FFMC	ISI
VIF值 VIF value	8.67	1.40	9.13	7.68	6.67	8.12	8.11	3.79	1.95	9.35

表 3 Step_LR 模型参数拟合

Tab. 3 Parameter estimation of Step_LR		LR mode	1	
变量	估计系数	标准误差	Z值	P值
Variable	Estimated coefficient	Std error	Z value	P value
截距 Intercept	-13.006	2.225	-2.923	0.003
WIN_max	0.013	0.003	3.932	0.000
Tmax	0.049	0.004	11.281	0.000
Tmin	-0.030	0.004	-8.448	0.000
RH_avg	-0.129	0.013	-9.903	0.000
RH_min	0.055	0.020	2.733	0.006
FFMC	0.077	0.023	2.091	0.037

与该地区林火发生均有显著相关性,其中 WIN_max、 Tmax、Tmin、RH_avg、RH_min 在 P < 0.01 水平上极 显著相关, FFMC 在 P < 0.05 水平上显著相关。

4.1.3 逐步逻辑斯蒂回归模型的检验

应用 ROC 曲线分析法对 Step_LR 模型的预测 能力进行拟合优度检验,并计算林火发生的分类阈

值。图 2 为预测模型的 ROC 曲线图, ROC 曲线下的 面积(AUC 值)为 0.783, 显著性水平 P < 0.001, 说明 模型的拟合优度为中等水平。根据约登指数公式可 得林火发生的分类阈值为 0.498, 以该值为分界点, 林火发生的预测概率值大于 0.498 视为有林火发生, 小于 0.498 则视为无林火发生, 进一步计算得到 20% 测试数据集对林火发生的预测概率为 0.718。

4.2 贝叶斯平均模型分析

4.2.1 BMA 模型的拟合

本文共有 17 个解释变量,利用各解释变量建立 林火发生的 Logistic 模型,可能存在的模型个数高 达 2¹⁷ 个,贝叶斯模型平均法可遍历模型空间中的每 一个模型,根据各模型的后验概率来衡量其对林火 发生的相对重要性,通过模型空间调整以确定较优 模型。将 Fire(1 和 0)设定为因变量 *Y*,各气象因子 设定为自变量 *X*,建立 BMA 模型,使用 R 程序的 "BMA package"进行计算。

本文设定相等的模型先验概率即均匀分布的模

型空间,对于参数的先验信息,设定为单位信息先 验;同时,采用了奥卡姆窗(Occam's window)的方法 来适当调整模型空间,即减少一定的模型数量,本文 设定当一个模型的后验概率(PMP)小于最佳模型后 验概率的 5%时,则从模型空间中被剔除。程序结果 如图 3 所示,奥卡姆窗筛选了 98 个较优模型,每个 模型包含了部分变量。

4.2.2 贝叶斯平均模型的构建

本文基于贝叶斯估计的后验概率对 98 个较优 模型做了贝叶斯模型平均,程序结果见表 4。

由表 4 可知, Tmax 的后验包含概率为 98.0%, VP_avg 的后验包含概率为 95.6%, BUI 的后验包含 概率为 70.0%, 这 3 个变量的后验包含概率较大, 意

图示根据奥卡姆窗被选中的 98 个模型以及每个模型各自选中的变量。横轴为模型编号, 宽度表示该模型的后验概率大小, 纵轴为解释变量代码。红色表示该变量与被解释变量存在正相关关系, 蓝色表示存在负相关关系, 无颜色即表示该变量没有被选入该模型。 The figure shows the 98 models selected according to the Occam's window and the variables selected by each model. The x-axis refers to the model No., the width represents the posterior probability of the model, and the y-axis is equidistant, showing the code of each explanatory variable. The red indicates that the variable has a positive correlation with the explained variable, the blue indicates that there is a negative correlation, and the variable without colour is not selected into the model.

图 3 BMA 模型可视化 Fig. 3 BMA model visualization

味着这3个变量对林火发生有较大影响。其他解释 变量的后验包含概率相对较小,说明这些解释变量 对林火发生的影响力相对减弱。而从模型的稳定性 角度看,最佳模型(model 1)的后验概率仅为0.062, 前5个模型的累计后验概率为0.249,由此可见,模 型的不确定性在该数据集中是相当大的。

本文以 5 个最优模型的后验概率作为权重进行 加权,来构建 BMA_Logistic(BMA_LR)组合模型。 加权整合后的平均模型为:

n	_	
ν	_	
1		1 $(7, 733, 0, 001 V, +0, 003 V, +0, 012 V, -0, 001 V, -0, 020 V, -0, 001 V, +0, 002 V, +0, 002 V,)$
		$ \pm \alpha^{-(1.233-0.001A_1+0.003A_2+0.012A_3-0.001A_4-0.020A_5-0.001A_6+0.002A_7+0.002A_8)} $

1

(4)

式中:p为林火发生的概率; X_1 为日平均气压(kPa); X_2 为日平均气温(\mathbb{C}); X_3 为日最高气温(\mathbb{C}); X_4 为 日最低气温(\mathbb{C}); X_5 为日平均水汽压(kPa); X_6 为日 平均相对湿度(\mathbb{N}); X_7 为日最小相对湿度(\mathbb{N}); X_8 为 累积指数。

4.2.3 贝叶斯平均模型的检验

应用 ROC 曲线分析法对 BMA_LR 模型的预测 能力进行拟合优度检验,并计算林火发生的分类阈 值。图 4 为预测模型的 ROC 曲线图,且 ROC 曲线 下的面积(AUC 值)为 0.868,显著性水平 P < 0.001, 说明模型的拟合优度较高。根据约登指数公式可得 林火发生的分类阈值为 0.562,以该值为分界点,林 火发生的预测概率值大于 0.562 视为有林火发生,小 于 0.562 则视为无林火发生。进一步计算得到 20% 测试数据集对林火发生的预测概率为 0.807,结果显 示模型具有较高的预测能力,可用于大理州林火发 生的预测预报。

4.3 不同算法的对比分析

4.3.1 最终指标体系

Step_LR 模型和 BMA_LR 模型的最终指标体 系对比如表 5 所示。在 BMA_LR 模型中, Tmax、 VP_avg 和 BUI 3 个变量的后验包含概率最大, 这 3 个变量只有 Tmax 进入了 Step_LR 模型的指标 体系。

4.3.2 模型预测准确率

根据模型变量选择结果,分别对 Step_LR 模型 和 BMA_LR 模型预测准确率进行计算。在训练集 中, BMA_LR 模型的预测准确率比 Step_LR 模型高 9.3%,在测试集中, BMA_LR 模型的预测准确率比 Step_LR 模型高 8.9%,结果显示 BMA_LR 模型具

	10		eruge cuseu on	Buj estan posten	for producting		
Variable	p! = 0	SD	Model 1	Model 2	Model 3	Model 4	Model 5
Intercept	100	45.070	-6.028	82.170	-5.490	86.100	-3.648
WIN_avg	1.3	0.002					
WIN_max	11.5	0.003					
SSD	5.9	0.004					
PRS_avg	23.4	0.005		-0.011		-0.012	
Tavg	26.8	0.021			0.048		
Tmax	98.0	0.015	0.054	0.054	0.028	0.063	0.046
Tmin	26.6	0.011			-0.024		
VP_avg	95.6	0.023	-0.081	-0.082	-0.077	-0.102	-0.064
RH_avg	19.7	0.036					-0.038
RH_min	33.9	0.033				0.061	
Pre	0.0	0					
FFMC	0.3	0.004					
DMC	16.6	0.005					
DC	6.0	0.001					
ISI	0.0	0					
BUI	70.0	0.006	0.008	0.007	0.007	0.007	0.007
FWI	8.3	0.013					
nVar			3	4	5	5	4
BIC			-7 039	-7 038	-7 038	-7 038	-7 037
post prob			0.062	0.057	0.056	0.039	0.035

表 4 基于贝叶斯后验概率的模型平均

Tab. 4 Model average based on Bayesian posterior probability

注: 本表为程序输出表格,其中Variable表示变量, p!=0为变量回归系数不为零的后验概率, SD为标准差, model 1~model 5为BMA筛选的后验概 率最大的5个模型, Intercept为截距项,从WIN_avg至FWI为各变量代码,参考表1, nVar为模型选中的变量数, BIC为贝叶斯信息量, post prob为模 型后验概率。Notes: this table is the program output table, where Variables represents the model variables, P!=0 is the posterior probability that the regression coefficient of the variable is not zero; SD is the standard deviation; model 1-model 5 are the 5 models with the largest posterior probability screened by BMA; Intercept is the intercept item, and from Win_avg to FWI is the variable code, as shown in Tab. 1. nVar is the number of variables selected by the model, BIC is the Bayesian information criterion, and post prob is the posterior probability of the model.

有较高的预测能力,可适用于云南省大理州林火 预测。

5 结论与讨论

本文分别应用二项逻辑斯蒂回归模型和贝叶斯 模型平均法建立了云南省大理州林火发生的单一模 型和组合模型。比较模型拟合结果表明,贝叶斯平 均模型的预测准确率比逐步逻辑斯蒂回归模型高 8.9%,说明基于贝叶斯模型平均法的组合模型林火 预测效果优于逐步逻辑斯蒂回归模型,可用于该地 区的林火发生预测预报。

本文构建的贝叶斯平均模型包含日平均气压、 日平均气温、日最高气温、日最低气温、日平均水汽 压、日平均相对湿度、日最小相对湿度、累积指数共 计8个气象因子,表明这8个气象因素是影响该地

	Tab. 5 Final indicator system and prediction accurac	y in the Step_LR and BMA_LR	model		
桔刑 Modal	描刑地坛体系 Madal index system	描刊毕在在系 Model in day system 预测准确率 Prediction accuracy/%			
快空 WIOUCI	读至11标件示 Model muck System	训练集 Training sample (80%)	测试集 Test sample (20%)		
Step_LR	WIN_max, Tmax, Tmin, RH_min, RH_avg, FFMC	73.3	71.8		
BMA_LR PRS_avg, Tavg, Tmax, Tmin, VP_avg, RH_avg, RH_min, BUI		82.6	80.7		

表 5 Step_LR 模型和 BMA_LR 模型中最终指标体系及预测准确率

区林火发生的重要驱动气象因子,特别是日平均水 汽压、日最高气温和累积指数后验包含概率均在 70%以上,表明这3个气象因子是影响该地区林火 发生的主要驱动气象因子。

在构建逻辑斯蒂回归模型时,首先进行了多重 共线性检验,剔除了日平均气温、日平均水汽压、前 1日 20:00—20:00 降雨量、干旱码、粗腐殖质湿度 码、累积指数、火险天气指数共计 7 个气象因子。在 这 7 个被剔除的气象因子中,日平均气温、日平均水 汽压、累积指数这 3 个气象因子则进入了最终贝叶 斯平均模型,可见进行多重共线性检验存在将重要 驱动因子提前去除的风险。这是因为进行多重共线 性检验考虑的是解释变量之间的相关性,而并未考 虑被剔除的变量对被解释变量的影响。因此,提前 对解释变量进行多重共线性检验,并根据检验结果 对存在多重共线性的变量进行剔除,则有可能剔除 了对林火发生有显著影响的气象因子,这就会造成 预测准确率的降低。

本文通过分析森林火灾对气象因子的响应讨论 了贝叶斯模型平均法对林火发生气象因子的选择及 林火预测的适用性,实际上,自然环境中影响林火发 生的生态因子和非生态因子很多。已有研究表明, 森林火灾发生还与植被类型、林型、地形、人为活动、 社会经济^[23,28-31]等多个因素息息相关,因此若想更 加及时有效地预测森林火灾的发生,还需进一步分 析上述因素中的重要驱动因子及其对林火发生的影 响。今后研究中应纳入以上变量,筛选关键驱动因 子,建立组合模型,进一步提高预测效果。

参考文献

- [1] Rigo D D, Giorgio L, Durrant T H, et al. Forest fire danger extremes in Europe under climate change: variability and uncertainty[M]. Luxembourg: Publications Office of the European Union, 2017.
- [2] 田晓瑞, 宗学政, 舒立福, 等. ENSO 事件对中国森林火险天气的影响[J]. 应用生态学报, 2020, 31(5): 65-73.
 Tian X R, Zong X Z, Shu L F, et al. Impacts of ENSO events on forest fire weather of China[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 65-73.
- [3] 白夜, 武英达, 贾宜松, 等. 2019—2020 年澳大利亚气候异常与 山火爆发的关系分析及应对策略[J]. 中国应急救援, 2020(2):

23-27.

Bai Y, Wu Y D, Jia Y S, et al. Link between climate anomaly and Australia bushfires in 2019–2020[J]. China Emergency Rescue, 2020(2): 23–27.

[4] 赵凤君, 舒立福. 森林草原火灾扑救安全学 [M]. 北京: 中国林 业出版社, 2015.

Zhao F J, Shu L F. Forest and grassland fire fighting safety[M]. Beijing: China Forestry Publishing House, 2015.

- [5] 岳超, 罗彩访, 舒立福, 等. 全球变化背景下野火研究进展[J]. 生态学报, 2020, 40(2): 385-401.
 Yue C, Luo C F, Shu L F, et al. A review on wildfire studies in the context of global change[J]. Acta Ecologica Sinica, 2020, 40(2): 385-401.
- [6] Marlon J R, Bartlein P J, Gavin D G, et al. Long-term perspective on wildfires in the western USA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3203–3204.
- Westerling A L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring[J]. Philosophical Transactions of the Royal Society of London (Series B): Biological Sciences, 2016, 371: 1–10.
- [8] 潘登, 郁培义, 吴强. 基于气象因子的随机森林算法在湘中丘陵区林火预测中的应用[J]. 西北林学院学报, 2018, 33(3): 175-183.
 Pan D, Yu P Y, Wu Q. Application of random forest algorithm on

the forest fire prediction based on meteorological factors in the hilly area, central Hunan Province[J]. Journal of Northwest Forestry University, 2018, 33(3): 175–183.

- [9] North M P, Stephens S L, Collins B M, et al. Reform forest fire management[J]. Science, 2015, 349: 1280–1281.
- [10] Fischer A P, Spies T A, Steelman T A, et al. Wildfire risk as a socioecological pathology[J]. Frontiers in Ecology and the Environment, 2016, 14(5): 276–284.
- [11] Zhang G, Wang M, Liu K. Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China[J]. International Journal of Disaster Risk Science, 2019, 10(3): 386–403.
- [12] Murphy T E, Tsang S W, Leo L S, et al. Bayesian model averaging for selection of a risk prediction model for death within thirty days of discharge: the silver-ami study[J]. International Journal of Statistics in Medical Research, 2019, 8: 1–7.
- [13] Huang H, Liang Z, Li B, et al. Combination of multiple datadriven models for long-term monthly runoff predictions based on Bayesian model averaging[J]. Water Resources Management,

2019, 33(9): 3321-3338.

- [14] 王倩,师鹏飞,宋培兵,等. 基于贝叶斯模型平均法的洪水集合 概率预报[J]. 水电能源科学, 2016(6): 64-66.
 Wang Q, Shi P F, Song P B, et al. Multi-model ensemble flood probability forecasting based on BMA[J]. Water Resources and Power, 2016(6): 64-66.
- [15] 张畅,陈新军.海洋环境因子对澳洲鲐亲体补充量关系的影响: 基于贝叶斯模型平均法的研究[J].海洋学报,2019,41(2): 99-106.

Zhang C, Chen X J. The effect of environmental factors on stockrecruitment relationship of spotted mackerel-based on Bayesian model averaging method[J]. Haiyang Xuebao, 2019, 41(2): 99–106.

- [16] 李丽琴. 云南省森林火灾发生与气象因子之间的关系研究 [D]. 北京: 北京林业大学, 2010.
 Li L Q. Study on the relationship between forest fires and the meteorological factors in Yunnan[D]. Beijing: Beijing Forestry University, 2010.
- [17] 周明昆, 王永平, 高月忠. 气象因子对云南大理森林火灾的影响[J]. 四川林业科技, 2012, 33(6): 96-99.
 Zhou M K, Wang Y P, Gao Y Z. Effects of meteorological factors on forest fires in Dali, Yunnan[J]. Journal of Sichuan Forestry Science and Technology, 2012, 33(6): 96-99.
- [18] Martell D L, Otukol S, Stocks B J. A logistic model for predicting daily people-caused forest fire occurrence in Ontario[J]. Canadian Journal of Forest Research, 1987, 17(5): 394–401.
- [19] 苏漳文, 刘爱琴, 郭福涛, 等. 福建林火发生的驱动因子及空间 格局分析[J]. 自然灾害学报, 2016, 25(2): 110–119.
 Su Z W, Liu A Q, Guo F T, et al. Driving factors and spatial distribution pattern of forest fire in Fujian Province[J]. Journal of Natural Disasters, 2016, 25(2): 110–119.
- [20] 于建龙, 刘乃安. 我国大兴安岭地区森林雷击火发生的火险天 气等级研究[J]. 火灾科学, 2010, 19(3): 131-137.
 Yu J L, Liu N A. Lightning-caused wildland fire weather danger rating in Daxing' anling region[J]. Fire Safety Science, 2010, 19(3): 131-137.
- [21] Bisquert M, Caselles E, Sánchez J M, et al. Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data[J]. International Journal of Wildland Fire, 2012, 21(8): 1025–1029.
- [22] Oliveira S, Oehler F, San-Miguel-Ayanz J, et al. Modeling spatial patterns of fire occurrence in Mediterranean Europe using

multiple regression and random forest[J]. Forest Ecology and Management, 2012, 275(4): 117–129.

- [23] 陈岱. 基于 Logistic 回归模型的大兴安岭林火预测研究[J]. 林 业资源管理, 2019(1): 116-122.
 Chen D. Prediction of forest fire occurrence in Daxing'an Mountains based on logistic regression model[J]. Forest Resources Management, 2019(1): 116-122.
- [24] Raftery A E, Gneiting T, Balabdaoui F, et al. Using Bayesian model averaging to calibrate forecast ensembles[J]. Monthly Weather Review, 2005, 133(5): 1155–1174.
- [25] 梁慧玲,林玉蕊,杨光,等. 基于气象因子的随机森林算法在塔 河地区林火预测中的应用[J]. 林业科学, 2016, 52(1): 89-98. Liang H L, Lin Y R, Yang G, et al. Application of random forest algorithm on the forest fire prediction in Tahe Area based on meteorological factors[J]. Scientia Silvae Sinicae, 2016, 52(1): 89-98.
- [26] 顾先丽, 吴志伟, 张宇婧, 等. 气候变化背景下江西省林火空间 预测[J]. 生态学报, 2020, 40(2): 667-677.
 Gu X L, Wu Z W, Zhang Y J, et al. Prediction research of the forest fire in Jiangxi Province in the background of climate change[J]. Acta Ecological Sinica, 2020, 40(2): 667-677.
- [27] Chang Y, Zhu Z L, Bu R C, et al. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China[J]. Landscape Ecology, 2013, 28(10): 1989–2004.
- [28] Guo F T, Su Z W, Wang G Y, et al. Understanding fire drivers and relative impacts in different Chinese forest ecosystems[J]. Science of the Total Environment, 2017, 605: 411–425.
- [29] Flannigan M D, Krawchuk M A, Groot W J D, et al. Implications of changing climate for global wildland fire[J]. International Journal of Wildland Fire, 2009, 18(5): 483–507.
- [30] Loepfe L, Rodrigo A, Lloret F. Two thresholds determine climatic control of forest fire size in Europe and northern Africa[J]. Regional Environmental Change, 2014, 14(4): 1395–1404.
- [31] 蔡奇均,曾爱聪,苏漳文,等.基于 Logistic 回归模型的浙江省 林火发生驱动因子分析[J].西北农林科技大学学报,2020, 48(2):108-115.

Cai Q J, Zeng A C, Su Z W, et al. Driving factors of forest fire in Zhejiang Province based on logistic regression model[J]. Journal of Northwest A&F University, 2020, 48(2): 108–115.

(责任编辑 赵 勃责任编委 舒立福)