高级检索
    张颖, 李晓格, 温亚利. 碳达峰碳中和背景下中国森林碳汇潜力分析研究[J]. 北京林业大学学报, 2022, 44(1): 38-47. DOI: 10.12171/j.1000-1522.20210143
    引用本文: 张颖, 李晓格, 温亚利. 碳达峰碳中和背景下中国森林碳汇潜力分析研究[J]. 北京林业大学学报, 2022, 44(1): 38-47. DOI: 10.12171/j.1000-1522.20210143
    Zhang Ying, Li Xiaoge, Wen Yali. Forest carbon sequestration potential in China under the background of carbon emission peak and carbon neutralization[J]. Journal of Beijing Forestry University, 2022, 44(1): 38-47. DOI: 10.12171/j.1000-1522.20210143
    Citation: Zhang Ying, Li Xiaoge, Wen Yali. Forest carbon sequestration potential in China under the background of carbon emission peak and carbon neutralization[J]. Journal of Beijing Forestry University, 2022, 44(1): 38-47. DOI: 10.12171/j.1000-1522.20210143

    碳达峰碳中和背景下中国森林碳汇潜力分析研究

    Forest carbon sequestration potential in China under the background of carbon emission peak and carbon neutralization

    • 摘要:
        目的  核算我国森林资源碳储量和价值量,摸清我国森林资源家底,了解森林资源状况,合理制定林业发展规划。预测森林碳储量及碳汇潜力,提高森林经营管理水平,为我国实现碳达峰碳中和的林业发展目标提供参考。
        方法  利用1973—2018年间9次森林资源清查数据,采用森林蓄积量法核算我国森林资源总碳储量及其变化情况,并按照不同林种分类核算森林资源的碳储量和价值量。采用GM(1,1)灰色预测模型和幂函数模型联合预测我国森林资源碳汇发展潜力,并通过构建林分单位面积生长量和碳储量的回归模型,分析不同经营管理水平下碳汇量的变化率。
        结果  (1)40多年来中国森林资源单位面积蓄积量平均为73.56 m3/hm2,林木碳储量由1976年的51.96 × 108 t增加到2018年的87.90 ×108 t,年均增汇0.855 7 × 108 t/a,森林资源总碳储量(包括林木、林地和林下植被)由125.06 × 108 t增加到214.39 × 108 t;其中,人工林碳储量增速明显,年均增加5.05%。(2)我国林木碳储量价值量由1976年的1 482.09 × 108 元增加到2018年的8 823.85 × 108 元,年均增加174.80 × 108 元,年复合增长率达到4.34%;其中,人工林碳储量价值年均增长8.24%。(3)GM(1,1)灰色模型预测2030年森林碳储量达到100.13 × 108 t,2018—2030年年均增汇1.59 × 108 t/a,预计2030年森林蓄积量可达到210.80 × 108 m3;2060年中国森林碳储量将达到180.32 × 108 t,2018—2060年年均增汇2.36 × 108 t/a。幂函数模型预测,2030年中国森林碳储量达到108.00 × 108 t,2018 ~ 2030年平均年碳汇量为2.25 ×108 t/a,预计2030年森林蓄积量可达到227.38 × 108 m3;2060年中国森林碳储量达到212.27 × 108 t,2018—2060年年增汇3.12 × 108 t/a。(4)在近15年的森林碳储量平均基准上,森林经营管理水平提高5%,森林碳储量将增加4.30% ~ 6.86%;提高10%,森林碳储量将增加9.89% ~ 12.47%;提高15%,森林碳储量将增加15.48% ~ 18.09%;提高20%,森林碳储量将增加20.96% ~ 21.07%。
        结论  在不考虑经济、政策等外部因素的影响下,基于森林生物量和蓄积量的变化,中国森林碳储量和价值量都是增加的。按照这个发展趋势,可以实现2030、2060年碳达峰碳中和时中国林业的预期发展目标。如果目前森林经营管理水平再提高,森林碳储量的变化率将逐步增加,碳汇潜力巨大。

       

      Abstract:
        Objective  Carbon reserves and value of forest resources in China should be calculated to understand the status of forest resources and formulate a reasonable forestry development plan. Through the prediction of forest carbon stocks and carbon sequestration potential, it can improve the level of forest management and provide reference value for China to achieve the goal of carbon emission peak and carbon neutralization.
        Method  Based on the data of 9 forest inventories from 1973 to 2018 in China, the total carbon stocks of forest resources in China were calculated using forest volume method, and the carbon stocks and values of forest resources were calculated according to different forest types. This paper uses GM (1,1) grey model and power function model to predict the development potential of forest carbon sequestration in China, and analyzes the changing rate of carbon sequestration under different management levels by constructing the regression model of forest growth per unit area and carbon storage.
        Result  (1) Over the past 40 years, China’s average unit area volume of forest resources is 73.56 m3/ha, forest carbon stocks increased from 5.196 billion t in 1976 to 8.790 billion t in 2018, with an average annual increase of 0.085 57 billion t/year. The total carbon stocks of forest resources (including forest, woodland and understory vegetation) increased from 12.506 billion t to 21.439 billion t; among them, carbon stocks of plantation increased significantly, with an average annual increase of 5.05%. (2) The values of forest carbon stocks in China increased from 148.209 billion CNY in 1976 to 882.385 billion CNY in 2018, with an average annual increase of 17.480 billion CNY and a compound annual growth rate of 4.34%. Among them, the values of plantation carbon stocks increased by 8.24%. (3) The GM (1,1) grey model predicted that the forest carbon stocks will reach 10.013 billion t in 2030, the average annual increase of carbon sequestration will be 159 million t/year from 2018 to 2030, and the forest volume will reach 21.080 billion m3 in 2030; the forest carbon stocks in China will reach 18.032 billion t in 2060, and the average annual increase of carbon sequestration will be 236 million t/year from 2018 to 2060. The power function model predicted that China’s forest carbon stocks will reach 10.8 billion t in 2030, the average annual carbon sequestration will be 225 million t/year from 2018 to 2030, and the forest volume was expected to reach 22.738 billion m3 in 2030; China’s forest carbon stocks will reach 21.227 billion t in 2060, and the annual increase of carbon sequestration will be 312 million t/year from 2018 to 2060. (4) Based on the average benchmark of forest carbon stocks in recent 15 years, if the forest management level increase by 5%, the forest carbon stocks will increase by 4.30% − 6.86%; if increase by 10%, the forest carbon stocks will increase by 9.89% − 12.47%; if increase by 15%, the forest carbon stocks will increase by 15.48% − 18.09%; and if the forest management level increase by 20%, the forest carbon stocks will increase by 20.96% − 21.07%.
        Conclusion  Without considering the influence of external factors such as economy and policy, based on the changes of forest biomass and volume, forest carbon stocks and values in China are increased. According to this development trend, China can achieve the expected development goal of carbon emission peak and carbon neutralization for forestry in 2030 and 2060. If the current forest management level is further improved, the changing rate of forest carbon stocks will gradually increase, and the carbon sequestration potential will be huge.

       

    /

    返回文章
    返回