高级检索
    李佳淇, 徐国祺, 秦韶山. 纳米SiO2-IPBC微胶囊的制备及其在橡胶木防霉的应用[J]. 北京林业大学学报, 2022, 44(11): 122-131. DOI: 10.12171/j.1000-1522.20220229
    引用本文: 李佳淇, 徐国祺, 秦韶山. 纳米SiO2-IPBC微胶囊的制备及其在橡胶木防霉的应用[J]. 北京林业大学学报, 2022, 44(11): 122-131. DOI: 10.12171/j.1000-1522.20220229
    Li Jiaqi, Xu Guoqi, Qin Shaoshan. Preparation of nano-SiO2-IPBC microcapsule and its application in mildew resistance of Hevea brasiliensis[J]. Journal of Beijing Forestry University, 2022, 44(11): 122-131. DOI: 10.12171/j.1000-1522.20220229
    Citation: Li Jiaqi, Xu Guoqi, Qin Shaoshan. Preparation of nano-SiO2-IPBC microcapsule and its application in mildew resistance of Hevea brasiliensis[J]. Journal of Beijing Forestry University, 2022, 44(11): 122-131. DOI: 10.12171/j.1000-1522.20220229

    纳米SiO2-IPBC微胶囊的制备及其在橡胶木防霉的应用

    Preparation of nano-SiO2-IPBC microcapsule and its application in mildew resistance of Hevea brasiliensis

    • 摘要:
        目的  制备一种新型纳米SiO2-IPBC微胶囊防霉剂并探究其性能,旨在提高3-碘-2-丙炔基氨基甲酸丁酯(IPBC)在木材中的固着性能和耐老化性能,使其具有长效缓释性能,拓宽其在木材防霉领域的应用范围。
        方法  通过溶胶–凝胶法合成的纳米SiO2粉末为囊壁,以IPBC为囊芯,采用真空共混法制备纳米SiO2-IPBC微胶囊木材防霉剂。采用傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、热重分析(TGA)、耐光老化和缓释性能分析等方法对微胶囊进行表征;以橡胶木为研究对象,可可球二孢、黑曲霉、绿色木霉、桔青霉为被试菌种,对不同质量分数纳米SiO2-IPBC微胶囊防霉剂处理的橡胶木抑菌效力进行综合评价,获得微胶囊防霉剂的综合性能指标。
        结果  纳米SiO2-IPBC微胶囊呈规则球状,粒径分布在20 ~ 100 nm之间,包覆率达46.33%。微胶囊发生热失重温度为120 ~ 280 ℃;经紫外灯照射60 min仅产生轻微黄变。微胶囊在质量分数20%的乙醇水溶液中,前60 min释放速率较快,后180 min释放缓慢,240 min时释放率达50%。FTIR分析表明微胶囊有Si−OH键生成。SEM表明微胶囊除了分布于木材导管中,还大量沉积在木材纹孔内。橡胶木防霉实验结果表明:随着微胶囊防霉剂质量分数的增加,其对4种霉菌的防治效力逐渐提高,当微胶囊防霉剂的质量分数为1.25%时,其对可可球二孢、桔青霉、绿色木霉、黑曲霉的防治效力均达到最高值,分别为78.125%、75.000%、68.750%和62.750%,防治效力由强到弱的顺序为可可球二孢 > 桔青霉 > 绿色木霉 > 黑曲霉。
        结论  本研究制备的纳米SiO2-IPBC微胶囊新型防霉剂,改善了IPBC的耐光老化性能,并具有缓释效果。微胶囊防霉剂对于4种橡胶木常见的霉菌均有较好的抑制作用,其中对蓝变菌可可球二孢的防治效果最佳。

       

      Abstract:
        Objective  This paper aims to prepare a new nano SiO2-IPBC microcapsule fungicide and study its characteristics, as well as improve the fixation and aging resistance of 3-iodo-2-propynyl-butyl-carbamate (IPBC) in wood, and expand its application in the field of wood mildew proof.
        Method  Nano SiO2-IPBC microcapsules were prepared by blending IPBC and nano SiO2 particles in a vacuum, nano SiO2 prepared by sol-gel method was the capsule wall, and IPBC was the capsule core. The microcapsules were characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), UV-aging resistance, and slow-release performance. Taking Hevea brasiliensis as the research object, Botryodiplodia theobromae, Aspergillus niger, Trichoderma viride, and Penicillium citrinum as the tested strains. The comprehensive indicators were obtained from different mass fraction microcapsule-ethanol impregnated rubber wood treatments.
        Result  Nano SiO2-IPBC microcapsules were regular spherical, with particle size distribution between 20–100 nm and coating rate of 46.33%. The temperature of the weight loss of microcapsules was 120–280 ℃. Only slight yellowing occurred after 60-min UV aging; in 20% ethanol aqueous solution, the release rate of microcapsules was fast in the first 60 min, gradually slowed down in the next 180 min, and its release rate reached 50% in 240 min. FTIR analysis showed that there were Si−OH bonds in the microcapsules. SEM showed that microcapsules were not only distributed in wood vessels, but also deposited in wood pits. The results of mildew proof experiment showed that with the increase of the mass fraction of the microcapsule fungicide, the control effect against 4 fungi had gradually improved. When the mass fraction of microcapsule fungicide increased to 1.25%, the control effect against Botryodiplodia theobromae, Aspergillus niger, Trichoderma viride and Penicillium citrinum reached the highest level, which were 78.125%, 75.000%, 68.750% and 62.750%, respectively. The order of control effect (from strong to weak) was as follows: Botryodiplodia theobromae > Penicillium citrinum > Trichoderma viride > Aspergillus niger.
        Conclusion  The nano SiO2-IPBC microcapsules prepared in this study improve the UV aging resistance of IPBC, as well as has a slow-release effect. The microcapsule fungicide has an excellent inhibitory effect on the 4 common mildews of rubber wood and has the best control effect on Botryodiplodia theobromae.

       

    /

    返回文章
    返回