高级检索

    不同碳政策情景下油松人工林最优轮伐期

    Optimal rotation period for Pinus tabuliformis plantations under different carbon policy scenarios

    • 摘要:
      目的 森林具有外部性,存在“市场失灵”问题,通过引入碳政策,施行适宜的管理决策,以实现多目标效益最大化,充分发展森林的碳汇功能,助力“双碳”目标的实现。
      方法 以中国陕西省油松人工林为研究对象,利用解析木数据,基于Richards方程构建林分生长模型;利用换算因子连续函数法构建碳储量生长模型;以Faustmann-Hartman模型为基础,模拟计算不同碳政策情景下的林地期望值及最优轮伐期;并且在碳税收和碳补贴政策下对不同碳价格的林分碳储量进行核算;通过敏感性分析,定量研究不同经济参数对林地期望值和最优轮伐期的影响。
      结果 (1)在利率为4%、碳价格为50元/t、木材价格为980元/m3时,仅考虑木材收益时最优轮伐期为56.2年,每公顷林地期望值为11 203元。碳补贴政策的加入会导致最优轮伐期延长0.4年,每公顷林地期望值增加至11 935元。在碳补贴基础上进一步引入碳税收,未改变最优轮伐期,但由于碳损失的“惩罚”作用,每公顷林地期望值下降至11 499元。(2)激励性碳政策会增加林分碳储量,碳价格每提高1个单位,每公顷碳储量提高3%。(3)当利率由1%增加到5%时,最优轮伐期不断缩短;当木材价格由700元/m3增加到1 200元/m3时,最优轮伐期几乎没有改变。
      结论 混合型碳政策可以有效延长轮伐期,提升林分碳储量,有利于森林的可持续发展。适度降低利率可延长最优轮伐期,增强森林碳汇等生态服务功能。

       

      Abstract:
      Objective Forests exhibit externalities and face market failures. By introducing carbon policies and implementing appropriate management strategies, it is possible to maximize multi-objective benefits, fully harness the carbon sequestration potential of forests, and contribute to achieving the “Dual Carbon” goals.
      Method This paper examines Pinus tabuliformis plantations in Shaanxi Province, China. Stand growth models were constructed using analytical timber data based on the Richards equation; carbon stock growth models were built using the conversion factor continuous function method. Based on the Faustmann-Hartman model, the land expectation value (LEV) and optimal rotation period were simulated under different carbon policy scenarios. Carbon storage of forest stands was calculated at various carbon prices under both carbon tax and subsidy policies. Sensitivity analysis was employed to quantitatively assess the impacts of different economic parameters on LEV and optimal rotation period.
      Result (1) At a discount rate of 4%, carbon price of 50 CNY/t, and timber price of 980 CNY/m3, the optimal rotation period was 56.2 years with timber revenue only, yielding a LEV of 11 203 CNY/ha. Introducing a carbon subsidy policy extended the optimal rotation period by 0.4 years and increased LEV to 11 935 CNY/ha. The addition of a carbon tax policy did not change the rotation period but reduced LEV to 11 499 CNY/ha due to carbon loss. (2) Incentive-based carbon policies enhanced forest carbon storage: a 1-unit increase in carbon price raises carbon storage per hectare by 3%. (3) As the discount rate increases from 1% to 5%, the optimal rotation period shortened progressively. When the timber price increased from 700 CNY/m3 to 1 200 CNY/m3, the optimal rotation period remained almost unchanged.
      Conclusion Hybrid carbon policies can effectively extend the rotation period and increase stand carbon storage, thereby promoting the sustainable development of forests. Moderately reducing the discount rate can extend the optimal rotation period, enhancing forest carbon sequestration and other ecosystem services.

       

    /

    返回文章
    返回