高级检索

    多传感器无人机林区大气监测三阶段校准方法:跳变检测至深度学习

    Three-stage calibration method for multi-sensor UAV forest atmospheric monitoring: from jump detection to deep learning

    • 摘要:
      目的 为克服复杂林地下地面站点稀疏、响应滞后以及无人机观测易受姿态扰动、下洗气流和传感器响应滞后影响而导致精度不足的难题,拟构建一套搭载多传感器的无人机大气监测及其数据校准系统,形成从数据获取到精度提升的完整技术路径,以满足林区高空间分辨率、动态大气环境监测的需求。
      方法 本研究设计并集成无人机平台、多传感器载荷、GPRS数据链路与嵌入式采集软件,实现PM2.5、PM10、NO2、SO2、CO、O3六种污染物以及温湿度的同步获取。随后依次开展三阶段处理:首先采用JUMP-MAD跳变检测与缺失值处理策略对原始序列进行异常识别与修复,其次利用林区固定传感器监测节点的高精度观测引入自适应反距离加权(AIDW)进行空间插值以生成时空一致的“准真实值”,最后构建融合残差结构与样本级注意力机制的深度神经网络(RADNN)并耦合随机森林回归形成两阶段校准框架(RADNN−RF),学习多传感器、多时空尺度的潜在误差模式,实现无人机数据的精确校准。
      结果 (1)异常值检测方法能够有效识别突变点,在保障数据连续性的同时降低噪声;(2)不同插值算法的留一验证对比中,相比于传统IDW,AIDW使MAE从0.823降至0.763,更准确地刻画了林地非均质浓度场;(3)最终构建的RADNN−RF多传感器融合模型在大气环境因子的对比中与“准真实值”的各项平均误差均在3%以内,在PM2.5的表现上与“准真实值”趋势高度一致, R^2 为0.97。显著优于校准前的原始数据,整体提升了数据准确性。同时模型能够在不同污染物之间实现联合建模与多尺度特征提取,充分挖掘温湿度等辅助特征的调节作用,有效提高了预测精度与稳健性,校准后浓度更贴近固定节点插值结果,且具备良好的泛化能力。
      结论 “异常检测—空间插值—深度融合”三阶段流程可系统降低无人机观测扰动影响,显著提升林区大气环境监测的精度与可靠性,为构建林地高分辨率、动态空气质量监测体系提供了可行且可推广的技术方案。

       

      Abstract:
      Objective To address the challenges of sparse ground stations, delayed response in complex forest environments, and reduced unmanned aerial vehicle (UAV) observation accuracy caused by platform perturbations, downwash airflow, and sensor lag, this study proposes a multi-sensor UAV atmospheric monitoring and data calibration systema. This framework establishes a complete technical pipeline from data acquisition to precision enhancement, fulfilling the demand for high-spatial-resolution, dynamic atmospheric monitoring in forested regions.
      Method We designed and integrated a UAV platform equipped with multi-sensor payloads, a GPRS data link, and embedded data acquisition software to simultaneously collect six pollutants (PM2.5, PM10, NO2, SO2, CO, O3), and temperature-humidity data. Subsequently, we implemented a three-stage processing workflow: (1) applying the JUMP-MAD algorithm for jump detection and missing-value handling to identify and repair anomalies in raw time series; (2) generating spatiotemporally consistent “quasi-ground-truth” fields via adaptive inverse distance weighting (AIDW) interpolation, leveraging high-accuracy observations from fixed forest monitoring nodes; and (3) developing a two-stage calibration framework—RADNN-RF—that combines a deep neural network with residual architecture and sample-level attention mechanisms (RADNN) with random forest regression to learn nonlinear error patterns across multiple sensors and spatiotemporal scales.
      Result (1) The outlier detection method effectively identified abrupt changes while preserving data continuity and reducing noise. (2) In leave-one-out cross-validation of interpolation methods, AIDW outperformed conventional IDW, reducing MAE from 0.823 to 0.763 and better capturing the heterogeneous concentration field in forested areas. (3) The final RADNN-RF fusion model achieved average errors below 3% across all atmospheric parameters when compared to quasi-ground-truth values. For PM2.5, the model showed excellent agreement in trend with an R2 of 0.97—significantly surpassing uncalibrated raw data. Moreover, the model enabled joint modeling across pollutants and multi-scale feature extraction, effectively leveraging auxiliary variables like temperature and humidity to enhance prediction accuracy and robustness. Calibrated concentrations closely aligned with fixed-node interpolation results and demonstrated strong generalization capability.
      Conclusion The proposed three-stage pipeline (anomaly detection−spatial interpolation−deep fusion) systematically mitigates UAV observation disturbances, and substantially improves the accuracy and reliability of atmospheric monitoring in forest ecosystems. This approach offers a practical and scalable technical solution for establishing high-resolution, dynamic air quality monitoring systems in forested landscapes.

       

    /

    返回文章
    返回