Citation: | Hu Haiqing, Luo Sisheng, Luo Bizhen, Wei Shujing, Wang Zhenshi, Wu Zepeng. Effects of forest fire disturbance on soil organic carbon and its components of Cunninghamia lanceolata forest in Guangdong Province, southern China[J]. Journal of Beijing Forestry University, 2019, 41(12): 108-118. DOI: 10.12171/j.1000-1522.20190179 |
[1] |
German D P, Chacon S S, Allison S D. Substrate concentration and enzyme allocation can affect rates of microbial decomposition[J]. Ecology, 2011, 92(7): 1471−1480. doi: 10.1890/10-2028.1
|
[2] |
Yanni S F, Diochon A, Helgason B L, et al. Temperature response of plant residue and soil organic matter decomposition in soil from different depths[J]. European Journal of Soil Science, 2018, 69(2): 325−335. doi: 10.1111/ejss.12508
|
[3] |
Ludwig S M, Alexander H D, Kielland K, et al. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest[J]. Global Change Biology, 2018, 24(12): 5841−5852. doi: 10.1111/gcb.14455
|
[4] |
Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304: 1623−1627. doi: 10.1126/science.1097396
|
[5] |
Yang Y, Tilman D, Furey G, et al. Soil carbon sequestration accelerated by restoration of grassland biodiversity[J]. Nature Communications, 2019, 10(1): 1−7. doi: 10.1038/s41467-018-07882-8
|
[6] |
Alcañiz M, Outeiro L, Francos M, et al. Effects of prescribed fires on soil properties: a review[J]. Science of The Total Environment, 2018, 613: 944−957.
|
[7] |
González-Pérez J A, González-Vila F J, Almendros G, et al. The effect of fire on soil organic matter: a review[J]. Environment International, 2004, 30(6): 855−870. doi: 10.1016/j.envint.2004.02.003
|
[8] |
Li Q, Tian Y, Zhang X, et al. Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature[J]. Applied Soil Ecology, 2017, 114: 152−160. doi: 10.1016/j.apsoil.2017.01.009
|
[9] |
赵鑫, 宇万太, 李建东, 等. 不同经营管理条件下土壤有机碳及其组分研究进展[J]. 应用生态学报, 2006, 17(11):2203−2209. doi: 10.3321/j.issn:1001-9332.2006.11.040
Zhao X, Yu W T, Li J D, et al. Research advances in soil organic carbon and its fractions under different management patterns[J]. Chinese Journal of Applied Ecology, 2006, 17(11): 2203−2209. doi: 10.3321/j.issn:1001-9332.2006.11.040
|
[10] |
姜培坤. 不同林分下土壤活性有机碳库研究[J]. 林业科学, 2005, 41(1):10−13. doi: 10.3321/j.issn:1001-7488.2005.01.003
Jiang P K. Soil active carbon pool under different types of vegetation[J]. Scientia Silvae Sinicae, 2005, 41(1): 10−13. doi: 10.3321/j.issn:1001-7488.2005.01.003
|
[11] |
余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17):4829−4838.
Yu J, Fang L, Bian Z F, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 2014, 34(17): 4829−4838.
|
[12] |
Plaza-Bonilla D, Álvaro-Fuentes J, Cantero-Martínez C. Identifying soil organic carbon fractions sensitive to agricultural management practices[J]. Soil and Tillage Research, 2014, 139: 19−22. doi: 10.1016/j.still.2014.01.006
|
[13] |
周广胜, 王玉辉, 蒋延玲, 等. 陆地生态系统类型转变与碳循环[J]. 植物生态学报, 2002, 26(2):250−254. doi: 10.3321/j.issn:1005-264X.2002.02.019
Zhou G S, Wang Y H, Jiang Y L, et al. Conversion of terrestrial ecosystems and carbon cycling[J]. Chinese Journal of Plant Ecology, 2002, 26(2): 250−254. doi: 10.3321/j.issn:1005-264X.2002.02.019
|
[14] |
孙悦, 徐兴良, KUZYAKOV Yakov. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报, 2014, 38(1):62−75.
Sun Y, Xu X L, Kuzyakov Y. Mechanisms of rhizosphere priming effects and their ecological significance[J]. Chinese Journal of Plant Ecology, 2014, 38(1): 62−75.
|
[15] |
任清胜, 辛颖, 赵雨森. 重度火烧对大兴安岭落叶松天然林土壤团聚体有机碳和黑碳的影响[J]. 北京林业大学学报, 2016, 38(2):29−36.
Ren Q S, Xin Y, Zhao Y S. Impact of severe burning on organic carbon and black carbon in soil aggregates in natural Larix gmelinii forest of Great Xing’an Mountains[J]. Journal of Beijing Forestry University, 2016, 38(2): 29−36.
|
[16] |
张参参, 吴小刚, 刘斌, 等. 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2):19−28.
Zhang C C, Wu X G, Liu B, et al. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19−28.
|
[17] |
郭丽玲, 潘萍, 欧阳勋志, 等. 赣南马尾松天然林不同生长阶段碳密度分布特征[J]. 北京林业大学学报, 2018, 40(1):37−45.
Guo L L, Pan P, Ouyang X Z, et al. Distribution characteristics of carbon density of natural Pinus massoniana forest at different stand growing stages in southern Jiangxi Province, eastern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 37−45.
|
[18] |
哈文秀, 周金星, 庞丹波, 等. 岩溶区不同恢复方式下土壤有机碳组分及酶活性研究[J]. 北京林业大学学报, 2019, 41(2):1−11.
Ha W X, Zhou J X, Pang D B, et al. Soil organic carbon fraction and enzyme activities under different restoration methods in karst area[J]. Journal of Beijing Forestry University, 2019, 41(2): 1−11.
|
[19] |
胡海清, 魏书精, 孙龙. 大兴安岭呼中区2010年森林火灾碳排放的计量估算[J]. 林业科学, 2012, 48(10):109−119. doi: 10.11707/j.1001-7488.20121017
Hu H Q, Wei S J, Sun L. Estimation of carbon emissions from forest fires in 2010 in Huzhong of Daxing'anling Mountain[J]. Scientia Silvae Sinicae, 2012, 48(10): 109−119. doi: 10.11707/j.1001-7488.20121017
|
[20] |
Alexander M E. Calculating and interpreting forest fire intensities[J]. Canadian Journal of Botany, 1982, 60(4): 349−357. doi: 10.1139/b82-048
|
[21] |
McLatchey G P, Reddy K R. Regulation of organic matter decomposition and nutrient release in a wetland soil[J]. Journal of Environmental Quality, 1998, 27(5): 1268−1274.
|
[22] |
张瑞, 张贵龙, 姬艳艳, 等. 不同施肥措施对土壤活性有机碳的影响[J]. 环境科学, 2013, 34(1):277−282.
Zhang R, Zhang G L, Ji Y Y, et al. Effects of different fertilizer application on soil active organic carbon[J]. Environmental Science, 2013, 34(1): 277−282.
|
[23] |
Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777−783. doi: 10.2136/sssaj1992.03615995005600030017x
|
[24] |
Wang Q, Zhong M, Wang S. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems[J]. Forest Ecology and Management, 2012, 271: 91−97. doi: 10.1016/j.foreco.2012.02.006
|
[25] |
Johnson D W, Curtis P S. Effect of forest management on soil C and N storage[J]. Forest Ecology Manage, 2001, 140: 227−238. doi: 10.1016/S0378-1127(00)00282-6
|
[26] |
尹云锋, 杨玉盛, 高人, 等. 皆伐火烧对杉木人工林土壤有机碳和黑碳的影响[J]. 土壤学报, 2009, 46(2):352−355. doi: 10.3321/j.issn:0564-3929.2009.02.023
Yin Y F, Yang Y S, Gao R, et al. Effects of slash burning on soil organic carbon and black carbon in Chinese fir plantation[J]. Acta Pedologica Sinica, 2009, 46(2): 352−355. doi: 10.3321/j.issn:0564-3929.2009.02.023
|
[27] |
Dai X, Boutton T W, Glaser B, et al. Black carbon in a temperate mixed-grass savanna[J]. Soil Biology and Biochemistry, 2005, 37(10): 1879−1881. doi: 10.1016/j.soilbio.2005.02.021
|
[28] |
Neff J C, Harden J W, Gleixner G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska[J]. Canadian Journal of Forest Research, 2005, 35(9): 2178−2187. doi: 10.1139/x05-154
|
[29] |
崔晓阳, 郝敬梅, 赵山山, 等. 大兴安岭北部试验林火影响下土壤有机碳含量的时空变化[J]. 水土保持学报, 2012, 26(5):195−200.
Cui X Y, Hao J M, Zhao S S, et al. Temporal and spacial changes of total soil organic carbon content as affected by an experimental forest fire in the Greater Xing'an Mountains[J]. Journal of Soil and Water Conservation, 2012, 26(5): 195−200.
|
[30] |
Grosse G, Harden J, Turetsky M, et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4): 1−23.
|
[31] |
李红运, 辛颖, 赵雨森. 火烧迹地不同恢复方式土壤有机碳分布特征[J]. 应用生态学报, 2016, 27(9):2747−2753.
Li H Y, Xin Y, Zhao Y S. Distribution characteristics of soil organic carbon of burned area under different restorations[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2747−2753.
|
[32] |
孔健健, 杨健. 火烧对中国东北部兴安落叶松林土壤性质和营养元素有效性的影响[J]. 生态学杂志, 2013, 32(11):2837−2843.
Kong J J, Yang J. Effects of fire on soil properties and nutrient availability in a Dahurian larch forest in Great Xing'an Mountains of Northeast China[J]. Chinese Journal of Ecology, 2013, 32(11): 2837−2843.
|
[33] |
Prieto-Fernández A, Acea M J, Carballas T. Soil microbial and extractable C and N after wildfire[J]. Biology and Fertility of Soils, 1998, 27(2): 132−142. doi: 10.1007/s003740050411
|
[34] |
Certini G. Effects of fire on properties of forest soils: a review[J]. Oecologia, 2005, 143(1): 1−10. doi: 10.1007/s00442-004-1788-8
|
[35] |
钱国平, 赵志霞, 李正才, 等. 火烧对北亚热带天然次生林土壤有机碳的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(6):115−119.
Qian G P, Zhao Z X, Li Z C, et al. Effects of fire on soil organic carbon in natural secondary forest in north subtropical areas[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(6): 115−119.
|
[36] |
王海淇, 郭爱雪, 邸雪颖. 大兴安岭林火点烧对土壤有机碳和微生物量碳的即时影响[J]. 东北林业大学学报, 2011, 39(5):72−76. doi: 10.3969/j.issn.1000-5382.2011.05.023
Wang H Q, Guo A X, Di X Y. Immediate changes in soil organic carbon and microbial biomass carbon after an experimental fire in Great Xing'an Mountains[J]. Journal of Northeast Forestry University, 2011, 39(5): 72−76. doi: 10.3969/j.issn.1000-5382.2011.05.023
|
[37] |
Hart S C, Classen A T, Wright R J. Long-term interval burning alters fine root and mycorrhizal dynamics in a ponderosa pine forest[J]. Journal of Applied Ecology, 2005, 42(4): 752−761. doi: 10.1111/j.1365-2664.2005.01055.x
|
[38] |
Neary D G, Klopatek C C, DeBano L F, et al. Fire effects on belowground sustainability: a review and synthesis[J]. Forest Ecology and Management, 1999, 122(1−2): 51−71. doi: 10.1016/S0378-1127(99)00032-8
|
[39] |
Holden S R, Gutierrez A, Treseder K K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests[J]. Ecosystems, 2013, 16(1): 34−46. doi: 10.1007/s10021-012-9594-3
|