Advanced search
    Chen Ying, Dong Lingbo, Liu Zhaogang. Optimal species composition for the main forest types of secondary forest in Maoershan Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 118-126. DOI: 10.13332/j.1000-1522.20190013
    Citation: Chen Ying, Dong Lingbo, Liu Zhaogang. Optimal species composition for the main forest types of secondary forest in Maoershan Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 118-126. DOI: 10.13332/j.1000-1522.20190013

    Optimal species composition for the main forest types of secondary forest in Maoershan Mountain, northeastern China

    More Information
    • Received Date: January 14, 2019
    • Revised Date: March 02, 2019
    • Available Online: April 29, 2019
    • Published Date: April 30, 2019
    • ObjectiveFocus on the natural secondary forest in Maoershan Mountain of northeastern China, this paper tries to find out the optimal tree species composition of different forest types at varied succession stages by comprehensive evaluation of stand characteristics, so as to provide a theoretical basis for the construction of a reasonable forest management model in this region.
      MethodBased on the datasets of 53 permanent sample plots in Maoershan Mountain in 2004 and 2016, a total of 12 indicators, namely uniform angle, neighborhood comparison, mingling degree, diameter distribution, stand density, stand volume growth, volume, mean height, natural regeneration density, stand potential density, Simpson diversity index and Pielou evenness index, which reflected three aspects of the forest characteristics (i.e., stand structure characteristics, stand vigor and tree species diversity), were selected to study the influence of different ratios of hard and soft wood in 3 different mixed forest types on forest structure, using the method of linear-weight comprehensive evaluation, based on effects of entropy-AHP method. One forest type was soft broadleaved mixed forest (the proportion of hard broadleaved trees in the stand was 0%, 10%, 20% and 30%), another was soft-hard broadleaved mixed forest (the proportion of hard broadleaved trees in the stand was 40%, 50% and 60%), and the last one was hard broadleaved mixed forest (the proportion of hard broadleaved trees in the stand was 70% and 80%).
      ResultAmong the 3 forest types, the overall mingling degree of mixed forest was relatively high (0.62−0.69), while the horizontal distribution pattern (0.53−0.56), size differentiation degree of forest trees (0.47−0.51), diameter distribution (q value: 1.09−1.19) and natural regeneration number (368−571 plant/ha) of stand were relatively poor. Stand volume growth showed a maximum weight (0.191) and neighborhood comparison showed a minimum weight (0.021). The proportion of hard broadleaved trees with the highest comprehensive evaluation value in the 3 forest types was 20%, 60% and 80%, respectively.
      ConclusionThe optimal tree species composition for the natural secondary forest in Maoershan Mountain differed significantly among different forest types. The optimal proportion of hard broadleaved trees for the 3 forest types (soft broadleaved mixed forest, soft-hard broadleaved mixed forest and hard broadleaved mixed forest) was 20%, 60% and 80%, respectively. The conclusion of this study can provide reference for the adjustment of tree species composition of broadleaved secondary forest in this region.
    • [1]
      Grau H R, Arturi M F, Brown A D, et al. Floristic and structural patterns along a chronosequence of secondary forest succession in Argentinean subtropical montane forests[J]. Forest Ecology & Management, 1997, 95(2): 161−171.
      [2]
      朱教君. 次生林经营基础研究进展[J]. 应用生态学报, 2002, 13(12):1689−1694. doi: 10.3321/j.issn:1001-9332.2002.12.040

      Zhu J J. A review on fundamental studies of secondary forest management[J]. Chinese Journal of Applied Ecology, 2002, 13(12): 1689−1694. doi: 10.3321/j.issn:1001-9332.2002.12.040
      [3]
      Chua S C, Ramage B S, Ngo K M, et al. Slow recovery of a secondary tropical forest in Southeast Asia[J]. Forest Ecology and Management, 2013, 308: 153−160.
      [4]
      沈国舫. 中国林业可持续发展及其关键科学问题[J]. 地球科学进展, 2000, 15(1):10−18. doi: 10.3321/j.issn:1001-8166.2000.01.002

      Shen G F. Sustainable development of forestry in China and its key scientific problems[J]. Advances in Earth Science, 2000, 15(1): 10−18. doi: 10.3321/j.issn:1001-8166.2000.01.002
      [5]
      Zhang P, Shao G, Zhao G, et al. China’s forest policy for the 21st century[J]. Science, 2000, 288: 2135−2136. doi: 10.1126/science.288.5474.2135
      [6]
      于立忠, 刘利芳, 王绪高, 等. 东北次生林生态系统保护与恢复技术探讨[J]. 生态学杂志, 2017, 36(11):3243−3248.

      Yu L Z, Liu L F, Wang X G, et al. Discussion on the protection and restoration technology of secondary forest ecosystems in Northeast China[J]. Chinese Journal of Ecology, 2017, 36(11): 3243−3248.
      [7]
      Chen X, Li B L, Lin Z S. The acceleration of succession for the restoration of the mixed-broadleaved Korean pine forests in Northeast China[J]. Forest Ecology & Management, 2003, 177(1): 503−514.
      [8]
      张悦, 易雪梅, 王远遐, 等. 采伐对红松种群结构与动态的影响[J]. 生态学报, 2015, 35(1):38−45. doi: 10.3969/j.issn.1673-1182.2015.01.008

      Zhang Y, Yi X M, Wang Y X, et al. Impact of tree harvesting on the population structure and dynamics of Pinus koraiensis (Pinaceae)[J]. Acta Ecologica Sinica, 2015, 35(1): 38−45. doi: 10.3969/j.issn.1673-1182.2015.01.008
      [9]
      Yu D, Zhou L, Zhou W, et al. Forest management in Northeast China: history, problems, and challenges[J]. Environmental Management, 2011, 48(6): 1122−1135. doi: 10.1007/s00267-011-9633-4
      [10]
      Hector A, Schmid B, Beierkuhnlein C, et al. Plant diversity and productivity experiments in European grasslands[J]. Science, 1999, 286: 1123−1127. doi: 10.1126/science.286.5442.1123
      [11]
      董灵波, 刘兆刚, 李凤日, 等. 大兴安岭主要森林类型林分空间结构及最优树种组成[J]. 林业科学研究, 2014, 27(6):734−740.

      Dong L B, Liu Z G, Li F R, et al. Quantitative analysis of forest spatial structure and optimal species composition for the main forest types in Daxing ’anling, Northeast China[J]. Forest Research, 2014, 27(6): 734−740.
      [12]
      Burrascano S, Blasi F M S. Testing indicators of sustainable forest management on understorey composition and diversity in southern Italy through variation partitioning[J]. Plant Ecology, 2011, 212(5): 829−841. doi: 10.1007/s11258-010-9866-y
      [13]
      李法胜, 于政中, 刘建国. 矩阵模型在最优树种组成研究中的应用[J]. 北京林业大学学报, 1992, 14(2):23−30.

      Li F S, Yu Z Z, Liu J G. Application of matrix model in species composition[J]. Journal of Beijing Forestry University, 1992, 14(2): 23−30.
      [14]
      张士增, 曹禹田. 天然落叶松林树种组成的优化[J]. 东北林业大学学报, 1997, 25(1):65−66.

      Zhang S Z, Cao Y T. The optimization of tree species composition of nature Dahurian Larch[J]. Journal of Northeast Forestry University, 1997, 25(1): 65−66.
      [15]
      吕康梅. 长白山过伐林区云冷杉针阔混交林最优林分结构和最优生长动态的研究[D]. 北京: 北京林业大学, 2006.

      Lü K M. Study on ideal stand structure and development of spruce-fir mixed stands in over cutting area in Changbai Mountains[D]. Beijing: Beijing Forestry University, 2006.
      [16]
      Condés S, Rio M D, Sterba H. Mixing effect on volume growth of Fagus sylvatica, and Pinus sylvestris, is modulated by stand density[J]. Forest Ecology & Management, 2013, 292: 86−95.
      [17]
      Légaré S, Paré D, Bergeron Y. The responses of black spruce growth to an increased proportion of aspen in mixed stands[J]. Canadian Journal of Forest Research, 2004, 34(2): 405−416. doi: 10.1139/x03-251
      [18]
      Reyes-Hernandez V J, Comeau P G. The influence of stocking and stand composition on productivity of boreal trembling aspen-white spruce stands[J]. Forests, 2015, 6(12): 4573−4587. doi: 10.3390/f6124387
      [19]
      Sterba H, Rio M D, Brunner A, et al. Effect of species proportion definition on the evaluation of growth in pure vs. mixed stands[J]. Forest Systems, 2014, 23(3): 547−559. doi: 10.5424/fs/2014233-06051
      [20]
      李菁, 骆有庆, 石娟. 基于生物多样性保护的兴安落叶松与白桦最佳混交比例: 以阿尔山林区为例[J]. 生态学报, 2012, 32(16):4943−4949.

      Li J, Luo Y Q, Shi J. The optimum mixture ratio of larch and birch in terms of biodiversity conservation: a case study in Aershan forest area[J]. Acta Ecologica Sinica, 2012, 32(16): 4943−4949.
      [21]
      贺燕. 金沟岭林场两种林型混交结构的研究[D]. 北京: 北京林业大学, 2015.

      He Y. Study on mixed structure of two forest type of Jingouling Forestry Station[D]. Beijing: Beijing Forestry University, 2015.
      [22]
      陈贝贝, 王凯, 倪瑞强, 等. 长白山针阔混交林乔木幼苗组成与空间分布[J]. 北京林业大学学报, 2018, 40(2):68−75.

      Chen B B, Wang K, Ni R Q, et al. Composition and spatial pattern of tree seedlings in a coniferous and broadleaved mixed forest in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 68−75.
      [23]
      林思祖, 黄宝龙, 洪伟, 等. 杉阔混交林混交比例确定的新途径[J]. 林业科学, 2004, 40(1):158−161. doi: 10.3321/j.issn:1001-7488.2004.01.026

      Lin S Z. Huang B L, Hong W, et al. New approach to decide the mixed proportion for establishing Chinese fir and broadleaved mixed forest[J]. Scientia Silvae Sinicae, 2004, 40(1): 158−161. doi: 10.3321/j.issn:1001-7488.2004.01.026
      [24]
      王蕾, 刘浪, 王玮玮, 等. 滇中地区华山松不同树种组成混交林林分空间结构研究[J]. 四川林业科技, 2015, 36(6):57−61. doi: 10.3969/j.issn.1003-5508.2015.06.010

      Wang L, Liu L, Wang W W, et al. Research on the stand spatial structure of mixed Pinus armandii forest of different tree species composition in central Yunnan areas[J]. Journal of Sichuan Forestry Science and Technology, 2015, 36(6): 57−61. doi: 10.3969/j.issn.1003-5508.2015.06.010
      [25]
      乌吉斯古楞. 长白山过伐林区云冷杉针叶混交林经营模式研究[D]. 北京: 北京林业大学, 2010.

      Wujisiguleng. Study on the management mode of spruce-fir mixed coniferous forest on over-cutting forest region of Changbai Mountain[D]. Beijing: Beijing Forestry University, 2010.
      [26]
      Kato J, Hayashi I. Quantitative analysis of a stand of Pinus densiflora undergoing succession to Quercus mongolica ssp. crispula (II): growth and population dynamics of Q. mongolica ssp. crispula under the P. densiflora canopy[J]. Ecological Research, 2007, 22(3): 527−533. doi: 10.1007/s11284-006-0046-4
      [27]
      郭韦韦, 张青, 亢新刚, 等. 长白山云冷杉林不同演替阶段树种组成及林下更新研究[J]. 南京林业大学学报(自然科学版), 2017, 41(1):109−116.

      Guo W W, Zhang Q, Kang X G, et al. Species composition and characteristics of saplings for spruce-fir forest at different succession stages in Changbai Mountain[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(1): 109−116.
      [28]
      惠刚盈, 张弓乔, 赵中华, 等. 天然混交林最优林分状态的π值法则[J]. 林业科学, 2016, 52(5):1−8.

      Hui G Y, Zhang G Q, Zhao Z H, et al. A new rule of π value of natural mixed forest optimal stand state[J]. Scientia Silvae Sinicae, 2016, 52(5): 1−8.
      [29]
      Hart S A, Chen H Y H. Understory vegetation dynamics of North American boreal forests[J]. Critical Reviews in Plant Sciences, 2006, 25(4): 381−397. doi: 10.1080/07352680600819286
      [30]
      梁会民, 彭世揆, 石小平. 基于熵AHP的子午岭林区可持续经营评价[J]. 南京林业大学学报(自然科学版), 2010, 34(3):93−96. doi: 10.3969/j.issn.1000-2006.2010.03.019

      Liang H M, Peng S K, Shi X P. The evaluation of sustainable forest management based on the method of entropy AHP in Ziwuling[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(3): 93−96. doi: 10.3969/j.issn.1000-2006.2010.03.019
      [31]
      闫妍. 帽儿山地区天然次生林主要林分类型结构的研究[D]. 哈尔滨: 东北林业大学, 2009.

      Yan Y. Study on structure of main forest types for secondary forest in Mao ’er Mountain[D]. Harbin: Northeast Forestry University, 2009.
      [32]
      周隽. 帽儿山地区天然次生林更新格局研究[D]. 哈尔滨: 东北林业大学, 2007.

      Zhou J. Study on regeneration pattern in secondary forest in Maoershan Region[D]. Harbin: Northeast Forestry University, 2007.
      [33]
      于亦彤, 王新杰, 刘雨, 等. 金沟岭林场云冷杉天然次生林空间结构[J]. 东北林业大学学报, 2018, 46(9):7−10. doi: 10.3969/j.issn.1000-5382.2018.09.002

      Yu Y T, Wang X J, Liu Y, et al. Stand spatial structure of natural mixed spruce-fir secondary forests in Jingouling Forest[J]. Journal of Northeast Forestry University, 2018, 46(9): 7−10. doi: 10.3969/j.issn.1000-5382.2018.09.002
      [34]
      Zhu J, Mao Z, Hu L, et al. Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China[J]. Journal of Forest Research, 2007, 12(6): 403−416. doi: 10.1007/s10310-007-0033-9
      [35]
      董灵波, 刘兆刚, 李凤日, 等. 凉水自然保护区阔叶红松林林分空间结构特征及其与影响因子关系[J]. 植物研究, 2014, 34(1): 114−120, 130.

      Dong L B, Liu Z G, Li F R, et al. Relationships between stand spatial structure characteristics and influencing factors of broad-leaved Korean pine (Pinus koraiensis) forest in Liangshui Nature Reserve, Northeast China[J]. Bulletin of Botanical Research, 2014, 34(1): 114−120, 130.
      [36]
      侯红亚, 王立海. 小兴安岭阔叶红松林物种组成及主要种群的空间分布格局[J]. 应用生态学报, 2013, 24(11):3043−3049.

      Hou H Y, Wang L H. Species composition and main populations spatial distribution pattern in Korean pine broadleaved forest in Xiaoxing ’an Mountains of Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3043−3049.
      [37]
      赵中华, 惠刚盈. 基于林分状态特征的森林自然度评价: 以甘肃小陇山林区为例[J]. 林业科学, 2011, 47(12):9−16. doi: 10.11707/j.1001-7488.20111202

      Zhao Z H, Hui G Y. Forest naturalness evaluation method based on stand state characters: a case study of Gansu Xiaolongshan Forests[J]. Scientia Silvae Sinicae, 2011, 47(12): 9−16. doi: 10.11707/j.1001-7488.20111202
      [38]
      Perot T, Picard N. Mixture enhances productivity in a two-species forest: evidence from a modeling approach[J]. Ecological Research, 2012, 27(1): 83−94. doi: 10.1007/s11284-011-0873-9
      [39]
      He Y, Qin L, Li Z, et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China[J]. Forest Ecology & Management, 2013, 295(5): 193−198.
      [40]
      罗佳, 田育新, 周小玲, 等. 不同造林模式水源涵养功能研究[J]. 中南林业科技大学学报, 2017, 37(3):79−85.

      Luo J, Tian Y X, Zhou X L, et al. Research on water conservation function exploration of different afforestation models[J]. Journal of Central South University of Forestry & Technology, 2017, 37(3): 79−85.
    • Cited by

      Periodical cited type(11)

      1. 陈晓林,陈亚鹏,李卫红,王玉阳. 干旱区不同地下水埋深下胡杨细根空间分布特征. 植物科学学报. 2018(01): 45-53 .
      2. 王琪,容丽. 环境影响下植物根系的生长分布特征研究进展. 贵阳学院学报(自然科学版). 2015(04): 61-66 .
      3. 杨婵婵,李宏,郭光华. 红枣中龄期吸收根和输导根空间分布特征. 北京农业. 2013(09): 30-32 .
      4. 王磊,马英杰,赵经华,洪明,游磊. 干旱区滴灌核桃树有效吸水根系的分布与模拟研究. 节水灌溉. 2013(10): 17-20 .
      5. 荐圣淇,赵传燕,方书敏,余凯,彭守璋,柳逸月,李彦甫. 基于地理信息技术油松(Pinus tabuliformis)根长密度估算及空间分布特征分析. 干旱区地理. 2012(04): 599-606 .
      6. 田盼盼,董新光,姚鹏亮,谢美玲. 干旱区不同灌溉方式下枣树根系分布特性研究. 水资源与水工程学报. 2012(01): 102-105 .
      7. 叶茂,徐海量,王晓峰,申瑞新. 塔里木河下游阿拉干断面胡杨根系空间分布规律研究. 西北植物学报. 2011(04): 801-807 .
      8. 李建林,冯起,司建华,常宗强,巨登三. 极端干旱区胡杨根系分布对土壤水分的响应. 干旱区资源与环境. 2009(11): 186-190 .
      9. 杨胜利,刘洪禄,郝仲勇,吴文勇. 畦灌条件下樱桃树根系的空间分布特征. 农业工程学报. 2009(S1): 34-38 .
      10. 李建林,冯起,司建华,常宗强,巨登三,郭巧玲. 极端干旱区胡杨根系吸水的二维数学模型. 生态学杂志. 2009(06): 1188-1193 .
      11. 冯起,司建华,李建林,席海洋. 胡杨根系分布特征与根系吸水模型建立. 地球科学进展. 2008(07): 765-772 .

      Other cited types(10)

    Catalog

      Article views (2717) PDF downloads (95) Cited by(21)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return