Advanced search
    He Kuaikuai, Wu Wenbin, Zhang Zijie, Hu Xiange, Han Fangxu, Niu Shihui, Li Yue. Genetic structure variation of Pinus tabuliformis plantations in Beijing and the differences with Shanxi mountain populations[J]. Journal of Beijing Forestry University, 2020, 42(6): 33-42. DOI: 10.12171/j.1000-1522.20190399
    Citation: He Kuaikuai, Wu Wenbin, Zhang Zijie, Hu Xiange, Han Fangxu, Niu Shihui, Li Yue. Genetic structure variation of Pinus tabuliformis plantations in Beijing and the differences with Shanxi mountain populations[J]. Journal of Beijing Forestry University, 2020, 42(6): 33-42. DOI: 10.12171/j.1000-1522.20190399

    Genetic structure variation of Pinus tabuliformis plantations in Beijing and the differences with Shanxi mountain populations

    More Information
    • Received Date: October 17, 2019
    • Revised Date: February 29, 2020
    • Available Online: June 02, 2020
    • Published Date: June 30, 2020
    • ObjectiveThe purpose of this study was to reveal the genetic diversity, genetic structure and genetic relationship of Pinus tabuliformis populations in Beijing, and to explore the impact of introduced land on population genetic structure and growth, and to provide references for the cultivation and germplasm resource management of P. tabuliformis in Beijing.
      MethodBased on 7 pairs of highly and stable polymorphically nuclear genomic EST-SSR primers, the population genetic diversity, genetic structure and genetic distance were analyzed among 8 P. tabuliformis populations planted in last century in Beijing, 3 ancient P. tabuliformis populations and 5 mountain populations from Shanxi Province of northern China.
      ResultThe genetic structure difference ( FST = 0.066) was the maximum among Beijing plantation populations, the second was population from Shanxi Province (FST = 0.033), and the lowest was ancient populations (FST = 0.023). Both of the Beijing populations and ancient populations deviated from Hardy-Weinberg equilibrium and showed heterozygote excess, and the maximum heterozygote excess was in ancient P. tabuliformis populations. All of the populations could be clustered into 3 categories when genetic distance was 0.020 based on genetic distance analysis, showing near genetic distances among different populations, the level of evolutionary divergence and genetic differentiation were relatively low. The EST-SSR loci site amplification frequency of J10, J20, J42 and J50 in Beijing populations, ancient P. tabuliformis and Shanxi populations showed significant differences, which could be used for source tracing for unknown provenances.
      ConclusionThe Beijing populations of P. tabuliformis have richer genetic diversity and higher genetic differentiation than ancient P. tabuliformis; some introduced provenances eventually phased out because of the difference in fitness under stress environment, resulting in the genetic structure has a certain amount of change for the retained population. Our study provides important theoretical foundation for the follow-up studies on the evaluation, cultivation and germplasm management of P. tabuliformis populations in Beijing.
    • [1]
      White T L, Adams W T, Neale D B. Forest genetics[M]. Cambridge: CABI Publishing, 2007.
      [2]
      Wilkinson D M. Is local provenance important in habitat creation?[J]. Journal of Applied Ecology, 2001, 38(6): 1371−1373.
      [3]
      Hugron S, Bussières J, Rochefort L. Tree plantations within the context of ecological restoration of peatlands: a practical guide[M]. Québec: Université Laval, 2013.
      [4]
      徐化成. 油松[M]. 北京: 中国林业出版社, 1993.

      Xu H C. Chinese pine[M]. Beijing: China Forestry Publishing House, 1993.
      [5]
      毛爱华, 李建祥, 张超英, 等. 19年生侧柏种源变异及选择研究[J]. 北京林业大学学报, 2010, 32(1):63−68.

      Mao A H, Li J X, Zhang C Y, et al. Geographic variation and provenance selection of Platycladus orientalis in a 19-year-old testing plantation[J]. Journal of Beijing Forestry University, 2010, 32(1): 63−68.
      [6]
      徐化成, 孙肇凤, 郭广荣, 等. 油松天然林的地理分布和种源区的划分[J]. 林业科学, 1981, 17(3):258−270.

      Xu H C, Sun Z F, Guo G R, et al. Geographic distribution of Pinus tabuliformis Carr. and classification of provenance regions[J]. Scientia Silvae Sinicae, 1981, 17(3): 258−270.
      [7]
      徐化成, 郭广荣, 冯林, 等. 油松天然林的生长与地理-气候因素的关系[J]. 北京林学院学报, 1981, 3(4):9−13.

      Xu H C, Guo G R, Feng L, et al. The relativity between natural Pinus tabuliformis forest growth and geographical climatic factors[J]. Journal of Beijing Forestry University, 1981, 3(4): 9−13.
      [8]
      云希和. 油松在北京平地栽植问题的初步探讨[J]. 园艺学报, 1965, 4(4):230−232.

      Yun X H. Preliminary discussion on the cultivation of Pinus tabuliformis in Beijing[J]. Journal of Horticulture, 1965, 4(4): 230−232.
      [9]
      史宇, 余新晓, 张佳音, 等. 北京山区油松人工林单木材积生长量BP神经网络模型[J]. 东北林业大学学报, 2010, 38(2):20−22. doi: 10.3969/j.issn.1000-5382.2010.02.008

      Shi Y, Yu X X, Zhang J Y, et al. BP neural network model for volume growth of single trees in Pinus tabulaeformis plantations in Beijing mountain area[J]. Journal of Northeast Forestry University, 2010, 38(2): 20−22. doi: 10.3969/j.issn.1000-5382.2010.02.008
      [10]
      《北京市林业志》编委会. 北京林业志[M]. 北京: 中国林业出版社, 1993.

      Editorial Board of Beijing Forestry Journal. Beijing forestry annals[M]. Beijing: China Forestry Publishing House, 1993.
      [11]
      张新波, 李悦, 袁虎威, 等. 山西油松天然林分21年子代生长性状遗传变异研究[J]. 北京林业大学学报, 2014, 36(3):104−109.

      Zhang X B, Li Y, Yuan H W, et al. Genetic variations of growth traits in a 21-year-old stand progeny of Shanxi natural Pinus tabuliformis forests[J]. Journal of Beijing Forestry University, 2014, 36(3): 104−109.
      [12]
      富裕华, 饶九欢, 周学仁, 等. 山西油松种群特点和亲子代性状的变异[J]. 山西农业科学, 1995, 23(3):40−45.

      Fu Y H, Rao J H, Zhou X R, et al. The characteristics of species colony and character variation of parents and filial generation of Pinus tabulaemis in Shanxi provindce[J]. Shanxi Agricultural Sciences, 1995, 23(3): 40−45.
      [13]
      武文斌, 贺快快, 狄皓, 等. 基于SSR标记的山西省油松山脉地理种群遗传结构与地理系统[J]. 北京林业大学学报, 2018, 40(10):51−59.

      Wu W B, He K K, Di H, et al. Genetic structure and geographic system of geographical population of Pinus tabuliformis mountain range based on SSR in Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2018, 40(10): 51−59.
      [14]
      张新波, 刘海荣, 毕理智, 等. 21年生油松种源性状变异和选择的研究[J]. 山西林业科技, 2013, 42(1):20−23, 39. doi: 10.3969/j.issn.1007-726X.2013.01.007

      Zhang X B, Liu H R, Bi L Z, et al. Variation and choice of provenance trait of 21 year Pinus tabuliformis[J]. Shanxi Forestry Science and Technology, 2013, 42(1): 20−23, 39. doi: 10.3969/j.issn.1007-726X.2013.01.007
      [15]
      王春玲, 王久丽. 北京市古树名木管理系统介绍[J]. 中国花卉园艺, 2008(4):16−17.

      Wang C L, Wang J L. Introduction of Beijing ancient and famous tree management system[J]. Chinese Flower Gardening, 2008(4): 16−17.
      [16]
      程祥, 张梅, 毛建丰, 等. 有限种群油松种子园的遗传多样性与交配系统[J]. 北京林业大学学报, 2016, 38(9):8−15.

      Cheng X, Zhang M, Mao J F, et al. Gene diversity and mating system of Pinus tabuliformis in finite population seed orchard[J]. Journal of Beijing Forestry University, 2016, 38(9): 8−15.
      [17]
      Wright S. Evolution and the genetics of population: variability within and among natural populations[M]. Chicago: University of Chicago Press, 1978.
      [18]
      Vendramin G G, Fady B, Gonzalez-Martinez S C, et al. Genetically depauperate but widespread: the case of an emblematic Mediterranean pine[J]. Evolution, 2008, 62(3): 680−688. doi: 10.1111/j.1558-5646.2007.00294.x
      [19]
      滑留帅, 陈宏, 杨晓冰, 等. 固原本地黄牛及其利杂群体PIT-1基因多态性与育肥性状的关系[J]. 西北农林科技大学学报(自然科学版), 2007, 35(12):1−5.

      Hua L S, Chen H, Yang X B, et al. Association of polymorphism of Pit-1 gene with fattening traits in Guyuan local cattle and crossbreed of Limousin× local cattle[J]. Journal of Northwest A&F University (Natural Science Edition), 2007, 35(12): 1−5.
      [20]
      Valente C, Alvarez L, Marques P I, et al. Genes from the TAS1R and TAS2R families of taste receptors: looking for signatures of their adaptive role in human evolution[J]. Genome Biology & Evolution, 2018, 10(4): 1139−1152.
      [21]
      Bulmer M G. The maintenance of the genetic variability of polygenic characters by heterozygous advantage[J]. Genetical Research, 1973, 22(1): 9−12. doi: 10.1017/S0016672300012799
      [22]
      Amandine D, Anne V, Magali F, et al. Progressive ataxia of Charolais cattle highlights a role of KIF1C in sustainable myelination[J/OL]. PLoS Genetics, 2018, 14(8): e1007550 [2019−09−30]. https://doi.org/10.1371/journal.pgen.1007550.
      [23]
      许玉兰, 蔡年辉, 白青松, 等. 基于微卫星分子标记的云南松及其近缘种遗传关系分析[J]. 西南林业大学学报, 2017, 37(1):1−9. doi: 10.11929/j.issn.2095-1914.2017.01.001

      Xu Y L, Cai N H, Bai Q S, et al. Genetic relationship of Pinus yunnanensis with related pine species based on microsatellite molecular markers[J]. Journal of Southwest Forestry University, 2017, 37(1): 1−9. doi: 10.11929/j.issn.2095-1914.2017.01.001
      [24]
      Li J J, Xiong C, He X, et al. Using SSR-HRM to identify closely related species in herbal medicine products: A case study on licorice[J/OL]. Frontiers in Pharmacology, 2018, 9: 407 [2019−09−10]. http://www.frontiersin.org/articles/10.3389/fphar.2018.00407/full.
      [25]
      徐化成, 唐季林. 油松种子发芽的生态学及其与种源的关系[J]. 林业科学, 1989, 25(6):492−501.

      Xu H C, Tang J L. Seed germination ecology of Pinus tabulaeformis in relation to their provenances[J]. Scientia Silvae Sinicae, 1989, 25(6): 492−501.
      [26]
      李明, 王树香, 高宝嘉. 油松天然次生林居群遗传多样性及与产地地理气候因子的关联分析[J]. 生态学报, 2013, 33(12):3602−3610. doi: 10.5846/stxb201211271680

      Li M, Wang S X, Gao B J, et al. Analysis of genetic diversity of Chinese pine (Pinus tabuliformis) natural secondary forest population and correlation with their habitat ecological factors[J]. Acta Ecologica Sinica, 2013, 33(12): 3602−3610. doi: 10.5846/stxb201211271680
      [27]
      隋宏大. 树高测量综合技术比较研究[D]. 北京: 北京林业大学, 2009.

      Sui H D. Comparative study on comprehensive technologies of tree height measurement[D]. Beijing: Beijing Forestry University, 2009.
      [28]
      袁虎威, 梁胜发, 符学军, 等. 山西油松第二代种子园亲本选择与配置设计[J]. 北京林业大学学报, 2016, 38(3):47−54.

      Yuan H W, Liang S F, Fu X J, et al. Parental selection and deployment design in the second-generation seed orchard of Chinese pine in Shanxi Province[J]. Journal of Beijing Forestry University, 2016, 38(3): 47−54.
      [29]
      Latta R G, Linhart Y B, Fleck D, et al. Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine[J]. Evolution, 1998, 52(1): 61−67. doi: 10.1111/j.1558-5646.1998.tb05138.x
      [30]
      Chen K M, Abbott R J, Milne R I, et al. Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China[J]. Molecular Ecology, 2008, 17(19): 4276−4288. doi: 10.1111/j.1365-294X.2008.03911.x
      [31]
      Xia H H, Wang B, Pan J, et al. Combining mitochondrial and nuclear genome analyses to disst the effects of colonization, environment, and geography on population structure in Pinus tabuliformis[J]. Evolutionary Applications, 2018, 10(11): 1931−1945.
    • Cited by

      Periodical cited type(2)

      1. 王博,杨雪清,蒋春颖,赖光辉,陈锋,刘晓东. 北京山区森林火灾蔓延风险评估. 生态学报. 2025(02): 813-821 .
      2. 律江,贾玮,刘洋,刘阳. 城市与森林融合的国有林场森林防火地面防控新范式探索——以北京市西山试验林场为例. 森林防火. 2024(03): 42-45 .

      Other cited types(0)

    Catalog

      Article views (2871) PDF downloads (75) Cited by(2)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return