Citation: | Zhang Mengku, Jiang Lichun. Prediction of bark thickness for Larix gmelinii based on machine learning[J]. Journal of Beijing Forestry University, 2022, 44(6): 54-62. DOI: 10.12171/j.1000-1522.20210097 |
[1] |
Martin R E, Crist J B. Elements of bark structure and terminology[J]. Wood and Fiber Science, 1970, 2(3): 269−279.
|
[2] |
成俊卿, 杨家驹, 刘鹏. 中国木材志[M]. 北京: 中国林业出版社, 1992.
Cheng J Q, Yang J J, Liu P. Woods of China[M]. Beijing: China Forestry Publishing House, 1992.
|
[3] |
Franceschi V R, Krokene P, Christiansen E, et al. Anatomical and chemical defenses of conifer bark against bark beetles and other pests[J]. New Phytologist, 2005, 167(2): 353−376. doi: 10.1111/j.1469-8137.2005.01436.x
|
[4] |
Wilson B G, Witkowski E T F. Seed banks, bark thickness and change in age and size structure (1978–1999) of the African savanna tree, Burkea africana[J]. Plant Ecology, 2003, 167(1): 151−162. doi: 10.1023/A:1023999806577
|
[5] |
Wesolowski A, Adams M A, Pfautsch S. Insulation capacity of three bark types of temperate Eucalyptus species[J]. Forest Ecology and Management, 2014, 313: 224−232. doi: 10.1016/j.foreco.2013.11.015
|
[6] |
Marshall H D, Murphy G E, Lachenbruch B. Effects of bark thickness estimates on optimal log merchandising[J]. Forest Products Journal, 2006, 56(11): 87−92.
|
[7] |
Heath L S, Hansen M, Smith J E, et al. Investigation into calculating tree biomass and carbon in the FIADB using a biomass expansion factor approach[J]. Forest Service, 2009, 37(1): 167−173.
|
[8] |
Laasasenaho J, Melkas T, Aldén S. Modelling bark thickness of Picea abies with taper curves[J]. Forest Ecology and Management, 2005, 206(1−3): 35−47. doi: 10.1016/j.foreco.2004.10.058
|
[9] |
Malone T, Liang J. A bark thickness model for white spruce in Alaska northern forests[J]. International Journal of Forestry Research, 2014, 2009: 1−5.
|
[10] |
张兴龙, 姜立春. 兴安落叶松树干去皮直径预测模型[J]. 林业科学研究, 2015, 28(1): 67−73.
Zhang X L, Jiang L C. Inside bark diameter prediction models for Dahurian larch[J]. Forestry Research, 2015, 28(1): 67−73.
|
[11] |
Stängle S M, Weiskittel A R, Dormann C F, et al. Measurement and prediction of bark thickness in Picea abies: assessment of accuracy, precision, and sample size requirements[J]. Canadian Journal of Forest Research, 2016, 46(1): 39−47. doi: 10.1139/cjfr-2015-0263
|
[12] |
唐诚, 王春胜, 庞圣江, 等. 西南桦人工林树皮厚度模型模拟[J]. 林业科学, 2017, 53(7): 85−93. doi: 10.11707/j.1001-7488.20170709
Tang C, Wang C S, Pang S J, et al. Simulating bark thickness for Betula alnoides plantations[J]. Scientia Silvae Sinicae, 2017, 53(7): 85−93. doi: 10.11707/j.1001-7488.20170709
|
[13] |
欧强新, 雷相东, 沈琛琛, 等. 基于随机森林算法的落叶松−云冷杉混交林单木胸径生长预测[J]. 北京林业大学学报, 2019, 41(9): 9−19.
Ou Q X, Lei X D, Shen C C, et al. Individual tree DBH growth prediction of larch-spruce-fir mixed forests based on random forest algorithm[J]. Journal of Beijing Forestry University, 2019, 41(9): 9−19.
|
[14] |
雷相东. 机器学习算法在森林生长收获预估中的应用[J]. 北京林业大学学报, 2019, 41(12): 23−36. doi: 10.12171/j.1000-1522.20190356
Lei X D. Applications of machine learning algorithms in forest growth and yield prediction[J]. Journal of Beijing Forestry University, 2019, 41(12): 23−36. doi: 10.12171/j.1000-1522.20190356
|
[15] |
车少辉, 张建国, 段爱国, 等. 杉木人工林胸径生长神经网络建模研究[J]. 西北农林科技大学学报(自然科学版), 2012, 4(3): 84−92.
Che S H, Zhang J G, Duan A G, et al. Modelling tree diameter growth for Chinese fir plantations with neural networks[J]. Journal of Northwest A&F University (Natatural Science Edition), 2012, 4(3): 84−92.
|
[16] |
沈剑波, 雷相东, 李玉堂, 等. 基于bp神经网络的长白落叶松人工林林分平均高预测[J]. 南京林业大学学报(自然科学版), 2018, 42(2): 147−154.
Shen J B, Lei X D, Li Y T, et al. Prediction mean height for Larix olgensis plantation based on Bayesian-regularization BP neural network[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(2): 147−154.
|
[17] |
Diamantopoulou M J, Özcelik R, Yavuz H. Tree-bark volume prediction via machine learning: a case study based on black alder’s tree-bark production[J]. Computers and Electronics in Agriculture, 2018, 151: 431−440. doi: 10.1016/j.compag.2018.06.039
|
[18] |
Che S, Tan X, Xiang C, et al. Stand basal area modelling for Chinese fir plantations using an artificial neural network model[J]. Journal of Forestry Research, 2019, 30(5): 1641−1649. doi: 10.1007/s11676-018-0711-9
|
[19] |
Zhao Q, Yu S, Zhao F, et al. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments[J]. Forest Ecology and Management, 2019, 434: 224−234. doi: 10.1016/j.foreco.2018.12.019
|
[20] |
Tian Y, Wu B, Su X, et al. A crown contour envelope model of Chinese fir based on random forest and mathematical modeling[J]. Forests, 2021, 12(1): 48.
|
[21] |
Li R, Weiskittel A R. Estimating and predicting bark thickness for seven conifer species in the Acadian Region of North America using a mixed-effects modeling approach: comparison of model forms and subsampling strategies[J]. European Journal of Forest Research, 2011, 130(2): 219−233. doi: 10.1007/s10342-010-0423-y
|
[22] |
Jang W, Keyes C R, Graham J M. Evaluation of predictive models for Douglas-fir bark thickness at breast height following 12 biomass harvest treatments[J]. Biomass and Bioenergy, 2016, 84: 118−123. doi: 10.1016/j.biombioe.2015.11.015
|
[23] |
Williams V L, Witkowski E T F, Balkwill K. Relationship between bark thickness and diameter at breast height for six tree species used medicinally in South Africa[J]. South African Journal of Botany, 2007, 73(3): 449−465. doi: 10.1016/j.sajb.2007.04.001
|
[24] |
Yuan H, Yang G, Li C, et al. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models[J]. Remote Sensing, 2017, 9(4): 309. doi: 10.3390/rs9040309
|
[25] |
Ding Y, Zhang H, Wang Z, et al. A comparison of estimating crop residue cover from sentinel-2 data using empirical regressions and machine learning methods[J]. Remote Sensing, 2020, 12(9): 1470. doi: 10.3390/rs12091470
|
[26] |
Breiman L. Random forest[J]. Machine Learning, 2001, 45: 5−32. doi: 10.1023/A:1010933404324
|
[27] |
王晓林, 蔡可旺, 姜立春. 落叶松树皮厚度变化规
Wang X L, Cai K W, Jiang L C. Study on bark thickness of dahurian larch[J]. Forest Engineering, 2011, 27(2): 8−11. doi: 10.3969/j.issn.1001-005X.2011.02.003
|
[28] |
Diamantopoulou M J, Milios E. Modelling total volume of dominant pine trees in reforestations via multivariate analysis and artificial neural network models[J]. Biosystems Engineering, 2010, 105(3): 306−315. doi: 10.1016/j.biosystemseng.2009.11.010
|
[29] |
Binoti D H B, Binoti M L M S, Leite H G, et al. Support vector machine to estimate volume of eucalypt trees[J]. Revista Árvore, 2016, 40(4): 689−693.
|
1. |
徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 .
![]() |