Advanced search
    Zhao Haitao, Wu Xiaojie, Zhong Mingxu, Qiu Junmeng, Shi Tongshuai, Fu Qun. Antibacterial activity of alkaloids from different growth parts of Berberis poiretii[J]. Journal of Beijing Forestry University, 2022, 44(7): 126-134. DOI: 10.12171/j.1000-1522.20220090
    Citation: Zhao Haitao, Wu Xiaojie, Zhong Mingxu, Qiu Junmeng, Shi Tongshuai, Fu Qun. Antibacterial activity of alkaloids from different growth parts of Berberis poiretii[J]. Journal of Beijing Forestry University, 2022, 44(7): 126-134. DOI: 10.12171/j.1000-1522.20220090

    Antibacterial activity of alkaloids from different growth parts of Berberis poiretii

    More Information
    • Received Date: March 06, 2022
    • Revised Date: June 03, 2022
    • Available Online: June 08, 2022
    • Published Date: July 24, 2022
    •   Objective  In this paper, the antibacterial activity of alkaloids from different parts (root, stem, leaf and fruit) of Berberis poiretii was evaluated to provide a theoretical basis for broadening the application fields of whole plant and developing new natural food preservatives.
        Method  Taking the diameter of bacteriostatic zone, the lowest bacteriostatic concentration and the lowest bacteriostatic concentration as the examination index, the Oxford Cup bacteriostatic method was used to study the inhibitory effects of alkaloids from different growth sites on four food-borne pathogens (Escherichia coli, Staphylococcus aureus, Salmonella spp., Bacillus subtilis), the types and contents of alkaloids were determined by high-performance liquid chromatography method.
        Result  Before and after purification, the alkaloids from 4 different parts of Berberis poiretii showed positive dose-effect relationship to four common food-borne pathogenic bacteria, i.e. Escherichia coli, Staphylococcus aureus, Salmonella spp., Bacillus subtilis. When the concentration of alkaloids was 60 g/L, the diameter of bacteriostatic zone was more than 20 mm. The minimum inhibitory concentration (MIC) to Escherichia coli, Salmonella spp. and Bacillus subtilis was 1.25 g/L, minimum bactericidal concentration (MBC) was 2.50 g/L, and the MIC to Staphylococcus aureus was 2.50 g/L, MBC was 5.00 g/L. When the concentration of alkaloid was 40 g/L, the diameter of bacteriostatic zone was more than 20 mm. The results showed that the MIC for Escherichia coli and Salmonella spp. was 0.31 g/L, MBC was 0.63 g/L, and the MIC for Bacillus subtilis and Salmonella spp. was 0.63 g/L, respectively, MBC was 1.25 g/L. The results of HPLC showed that the purified alkaloids were berberine (0.28–41.69 g), jatrorrhizine (0.32–12.67 g) and palmatine (0.25–17.09 g) .
        Conclusion  The root, stem and fruit of Berberis poiretii have stronger bacteriostatic effect on the tested strains, but the leaf has weaker bacteriostatic effect. The basic alkaloid monomers in 4 different growing parts are the same, but the content of the monomers is significantly different. When the concentration of alkaloid is 60 g/L, the order of bacteriostasis is fruit > root > stem > leaf, and the order of bacteriostasis is root > stem > fruit > leaf.
    • [1]
      吴秋云, 黄琳, 皮真, 等. 中草药抑菌作用及其机制研究进展[J]. 中兽医医药杂志, 2018, 37(1): 25−29.

      Wu Q Y, Huang L, Pi Z, et al. Research progress of antibacterial activity and mechanism of Chinese herbal medicine[J]. Journal of Traditional Chinese Veterinary Medicine, 2018, 37(1): 25−29.
      [2]
      Authority E. Analysis of the baseline survey on the prevalence of Listeria monocytogenes in certain ready-to-eat foods in the EU, 2010−2011 part A: Listeria monocytogenes prevalence estimates[J]. EFSA Journal, 2013, 12(8): 38−110.
      [3]
      Ferreira V, Wiedmann M, Teixeira P, et al. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health[J]. Journal of Food Protection, 2014, 77(1): 150−170. doi: 10.4315/0362-028X.JFP-13-150
      [4]
      王承瑞, 刘思思, 易有金, 等. 不同来源皂素对常见食源性致病菌的抑菌效果研究[J]. 食品工业科技, 2022, 43(3): 120−127.

      Wang C R, Liu S S, Yi Y J, et al. Study on the antibacterial effects of saponin from different sources on common food-borne pathogens[J]. Science and Technology of Food Industry, 2022, 43(3): 120−127.
      [5]
      刘彦辰, 初天舒, 许亮, 等. 细叶小檗的组织构造与显微特征[J]. 辽宁中医药大学学报, 2015, 17(9): 46−49.

      Liu Y C, Chu T S, Xu L, et al. The organizational structure and the microscopic characteristics of Berberis poiretii schneid[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2015, 17(9): 46−49.
      [6]
      刘潇雯, 吕伟旗, 陈伟东, 等. 6省13个产地细叶小檗中盐酸小檗碱测定与相关性分析[J]. 中成药, 2021, 43(3): 713−716. doi: 10.3969/j.issn.1001-1528.2021.03.027

      Liu X W, Lü W Q, Chen W D, et al. Determination of berberine hydrochloride in Berberis poiretii from thirteen growing areas in six provinces and municipalities and correlation analysis[J]. Chinese Traditional Patent Medicine, 2021, 43(3): 713−716. doi: 10.3969/j.issn.1001-1528.2021.03.027
      [7]
      符群, 张海婷. 半仿生法提取细叶小檗总生物碱及抑菌性研究[J]. 北京林业大学学报, 2018, 40(5): 117−123.

      Fu Q, Zhang H T. Using the method of semi-bionic to extract total alkaloids from Berberis poiretii and to study the antibacterial property[J]. Journal of Beijing Forestry University, 2018, 40(5): 117−123.
      [8]
      李香, 汪巍, 邓莹, 等. 三颗针不同炮制、提取方法对糖尿病小鼠血糖、血脂的影响研究[J]. 天然产物研究与开发, 2019, 31(8): 1307−1316.

      Li X, Wang W, Deng Y, et al. Study the effect of Berberis diaphana maxim with different preparation and extraction methods on blood glucose and lipid lever in diabetic mice[J]. Natural Product Research and Development, 2019, 31(8): 1307−1316.
      [9]
      Ding Y P, Ye X L, Zhu J Y, et al. Structural modification of berberine alkaloid and their hypoglycemic activity[J]. Journal of Functional Foods, 2014, 7: 229−237. doi: 10.1016/j.jff.2014.02.007
      [10]
      刘洋, 冉聪, 游桂香, 等. 川黄柏中盐酸小檗碱HPLC测定优化及其抑菌活性评价[J]. 中国农业科技导报, 2020, 22(2): 179−186.

      Liu Y, Ran C, You G X, et al. Determination of berberine hydrochloride in crystal of Phellodendron chinensis by HPLC and evaluation of bacteriostatic activity[J]. Journal of Agricultural Science and Technology, 2020, 22(2): 179−186.
      [11]
      徐澜, 许朝花, 李婧菡. 忻州本地黄连小檗碱的提取及其抑菌性[J]. 分子植物育种, 2019, 17(24): 8271−8278.

      Xu L, Xu C H, Li J H. Extraction and bacteriostasis of berberine in Chinese rhizoma Coptis chinensis Franch in Xinzhou[J]. Molecular Plant Breeding, 2019, 17(24): 8271−8278.
      [12]
      Alam P, Parvez M K, Arbab A H, et al. Inter-species comparative antioxidant assay and HPTLC analysis of sakuranetin in the chloroform and ethanol extracts of aerial parts of Rhus retinorrhoea and Rhus tripartita[J]. Pharmaceutical Biology, 2017, 55(1): 1450−1457. doi: 10.1080/13880209.2017.1304428
      [13]
      吴莉莉, 白术杰, 王书红, 等. 细叶小檗叶中总黄酮含量测定[J]. 黑龙江医药科学, 2020, 43(5): 19−20. doi: 10.3969/j.issn.1008-0104.2020.05.006

      Wu L L, Bai S J, Wang S H, et al. Determination of total flavone content in barberry leaf[J]. Heilongjiang Medicine and Pharmacy, 2020, 43(5): 19−20. doi: 10.3969/j.issn.1008-0104.2020.05.006
      [14]
      席国萍, 宋国斌. 大孔吸附树脂分离纯化黄连小檗碱研究[J]. 中国医药导报, 2011, 8(5): 44−46. doi: 10.3969/j.issn.1673-7210.2011.05.020

      Xi G P, Song G B. Study on separation and purification of berberine in Coptis chinensis by macroporous adsorption resin[J]. China Medical Herald, 2011, 8(5): 44−46. doi: 10.3969/j.issn.1673-7210.2011.05.020
      [15]
      罗佳, 马若克, 符韵林, 等. 观光木果实黄酮类成分的初步鉴定及抗氧化活性分析[J]. 森林工程, 2021, 37(6): 53−61. doi: 10.3969/j.issn.1006-8023.2021.06.008

      Luo J, Ma R K, Fu Y L, et al. Preliminary identification and antioxidant activity analysis of flavonoids in the fruit of Tsoongiodendron odorum[J]. Forest Engineering, 2021, 37(6): 53−61. doi: 10.3969/j.issn.1006-8023.2021.06.008
      [16]
      胡冬华, 袁绪富. 黄连素的提取及分子活性部位研究[J]. 长春中医学院学报, 2006, 22(1): 67.

      Hu D H, Yuan X F. Study on extraction and molecular active sites of berberine[J]. Academic Periodical of Changchun College of Traditional Chinese Medicine, 2006, 22(1): 67.
      [17]
      包怡红, 曹伟华, 符群, 等. 细叶小檗总生物碱的抑菌活性及热降解动力学[J]. 现代食品科技, 2020, 36(3): 29−37.

      Bao Y H, Cao W H, Fu Q, et al. Antimicrobial activity and thermal degradation kinetics of total alkaloids from Berberis poiretii[J]. Modern Food Science & Technology, 2020, 36(3): 29−37.
      [18]
      樊梓鸾, 张艳东, 张华, 等. 红松松针精油抗氧化和抑菌活性研究[J]. 北京林业大学学报, 2017, 39(8): 98−103.

      Fan Z L, Zhang Y D, Zhang H, et al. Antioxidant and antibacterial activity of essential oil from Pinus koraiensis needles[J]. Journal of Beijing Forestry University, 2017, 39(8): 98−103.
      [19]
      吴惠香, 杨华, 赵登奇, 等. 三甲胺柱[5]芳烃的合成及其抑菌性能[J/OL]. 食品科学[2022−02−11]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220125.1901.014.html

      Wu H X, Yang H, Zhao D Q, et al. Synthesis of trimethylamine based cationic pillar[5]arene and study on antibacterial properties[J/OL]. Food Science [2022−02−11]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220125.1901.014.html
      [20]
      刘颖, 李世颂, 刘娟. HPLC测定关黄柏中生物碱的含量[J]. 中国实验方剂学杂志, 2013, 19(16): 88−91.

      Liu Y, Li S S, Liu J. Determination of alkaloids in Phellodendri amurensis cortex by HPLC[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2013, 19(16): 88−91.
      [21]
      陈祥云, 彭财英, 卢健, 等. 含小檗碱类中草药总生物碱的提取工艺及其药理研究进展[J]. 江西中医药, 2018, 49(9): 68−72.

      Chen X Y, Peng C Y, Lu J, et al. Research progress in extraction technology and pharmacology of total alkaloids from berberine-containing Chinese herbal medicines[J]. Jiangxi Journal of Traditional Chinese Medicine, 2018, 49(9): 68−72.
      [22]
      张琳, 陈思含, 任小艳, 等. 不同部位镇坪黄连小檗碱、总生物碱提取与含量测定[J]. 山东化工, 2021, 50(4): 116−119. doi: 10.3969/j.issn.1008-021X.2021.04.040

      Zhang L, Chen S H, Ren X Y, et al. Extraction and determination of total alkaloids and berberine from different parts of Zhenping Coptis chinensis[J]. Shandong Chemical Industry, 2021, 50(4): 116−119. doi: 10.3969/j.issn.1008-021X.2021.04.040
      [23]
      黎代余, 冯图, 陈志怡, 等. 毕节产小檗药材不同部位生物碱的含量差异[J]. 贵州农业科学, 2018, 46(12): 113−115. doi: 10.3969/j.issn.1001-3601.2018.12.025

      Li D Y, Feng T, Chen Z Y, et al. Study on the difference of alkaloids content in different parts of Berberis thunbergii in Bijie City[J]. Guizhou Agricultural Sciences, 2018, 46(12): 113−115. doi: 10.3969/j.issn.1001-3601.2018.12.025
      [24]
      向前胜, 王宁, 赵越, 等. 青海省3种小檗不同地区、不同部位小檗碱含量的比较研究[J]. 西南农业学报, 2016, 29(1): 54−58.

      Xiang Q S, Wang N, Zhao Y, et al. Comparative study of berberine in various organs of three kinds of Berberis in different areas of Qinghai Province[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(1): 54−58.
      [25]
      陈晓斌, 周琴妹, 刘顺, 等. D101型大孔树脂纯化山豆根总生物碱的工艺优选[J]. 中国实验方剂学杂志, 2015, 21(3): 21−23.

      Chen X B, Zhou Q M, Liu S, et al. Optimization of purification technology of total alkaloids from Sophorae tonkinensis radix et rhizoma by D101 macroporous resin[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2015, 21(3): 21−23.
      [26]
      扶雅芬. 工业大麻叶提取物的抑菌活性及其作用机理[D]. 北京: 中国农业科学院, 2021.

      Fu Y F. The antibacterial activity and its principle of the leaf extract from industrial hemp[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
      [27]
      张俊顺, 高铭坤, 郭阳, 等. 细叶小檗碱的抑菌稳定性及其对细菌蛋白质的影响[J]. 中国食品学报, 2021, 21(12): 81−87.

      Zhang J S, Gao M K, Guo Y, et al. The antibacterial stability of Berberis poiretii and its effect on bacterial protein[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(12): 81−87.
      [28]
      Yang C L, Li B, Ge M Y, et al. Inhibitory effect and mode of action of chitosan solution against rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae RS-1[J]. Carbohydrate Research, 2014, 391: 48−54. doi: 10.1016/j.carres.2014.02.025
      [29]
      阚玉红, 谢笔钧, 孙智达. 胭脂红番石榴叶黄酮提取物的抑菌活性及其机理[J]. 中国调味品, 2021, 46(12): 159−166,188. doi: 10.3969/j.issn.1000-9973.2021.12.030

      Kan Y H, Xie B Y, Sun Z D. Antibacterial activity and mechanism of flavonoids extracted from leaves of Psidium guajava[J]. China Condiment, 2021, 46(12): 159−166,188. doi: 10.3969/j.issn.1000-9973.2021.12.030
      [30]
      杨勇, 叶小利, 李学刚. 4种黄连生物碱的抑菌作用[J]. 时珍国医国药, 2007, 18(12): 3013−3014. doi: 10.3969/j.issn.1008-0805.2007.12.069

      Yang Y, Ye X L, Li X G. Antimicrobial effect of four alkaloids from Coptidis rhizome[J]. Lishizhen Medicine and Materia Medica Research, 2007, 18(12): 3013−3014. doi: 10.3969/j.issn.1008-0805.2007.12.069
      [31]
      鄢丹, 肖小河, 金城, 等. 微量量热法研究黄连中小檗碱类生物碱对金黄色葡萄球菌生长代谢的影响[J]. 中国科学: 化学, 2008, 38(6): 487−491.

      Yan D, Xiao X H, Jin C, et al. Effects of berberine alkaloids in Coptis chinensis on growth and metabolism of Staphylococcus aureus by microcalorimetry[J]. Scientia Sinica (Chimica), 2008, 38(6): 487−491.
      [32]
      代春美, 彭成, 王伽伯, 等. 微量热法对小檗碱类生物碱抑菌作用的量效关系研究[J]. 中草药, 2010, 41(7): 1136−1139.

      Dai C M, Peng C, Wang J B, et al. Dose-effect relationship of berberine and analogues on antibacterial metabolism of Bacillus shigae by microcalorimetry[J]. Chinese Traditional and Herbal Drugs, 2010, 41(7): 1136−1139.
      [33]
      陈巍, 武洲, 田原, 等. 细叶小檗果实的化学成分研究[J]. 亚太传统医药, 2012, 8(3): 23−24. doi: 10.3969/j.issn.1673-2197.2012.03.012

      Chen W, Wu Z, Tian Y, et al. Study on chemical constituents of the fruit of Berberis poiretii Schneid[J]. Asia-Pacific Traditional Medicine, 2012, 8(3): 23−24. doi: 10.3969/j.issn.1673-2197.2012.03.012
      [34]
      苏婷. 乌拉草抑菌活性物质及作用机制研究[D]. 长春: 长春中医药大学, 2021.

      Su T. Study on the antimicrobial active substance and its mechanism of action of Carex meyeriana Kunth [D]. Changchun: Changchun University of Chinese Medicine, 2021.
    • Related Articles

      [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
      [2]Zhang Qingshuo, Yang Yutong, Fu Yunlin, Sun Jing. Dyeing process and mechanism of eucalyptus veneer with Dalbergia bariensis heartwood pigment as dye[J]. Journal of Beijing Forestry University, 2020, 42(3): 151-159. DOI: 10.12171/j.1000-1522.20190270
      [3]WANG Xiao-qian, ZHANG Yang, YU Zhi-ming.. Preparation of an antibacterial N,O-carboxymethyl chitosan dye.[J]. Journal of Beijing Forestry University, 2016, 38(11): 104-110. DOI: 10.13332/j.1000-1522.20160112
      [4]YU Cun, CHI Yu-jie. Decolorization to two reactive dyes of Cerena unicolor CB1[J]. Journal of Beijing Forestry University, 2014, 36(4): 126-132. DOI: 10.13332/j.cnki.jbfu.2014.04.023
      [5]LI Guo-fu, LI Jun, LU Le, PAN Jun-bo, ZHAO Min, WANG Tian-n&ucirc, XU Teng-fei, WANG Jing-yao. Isolation of laccase-producing strain Bacillus amyloliquefaciens LC03 and characterization of its spore laccase.[J]. Journal of Beijing Forestry University, 2013, 35(3): 116-121.
      [6]ZHAO Li-yan, ZHAO Min, LU Lei, WANG Tian-nü. Application of Cerrena unicolor laccase-mediator system in dye decolorization.[J]. Journal of Beijing Forestry University, 2011, 33(4): 130-135.
      [7]LU Lei, ZHAO Min, ZHAO Li-yan, LIANG Shu-cheng, LI Tai-lun, DU Mei-hui. Purification, characterization and dye decolorization of a recombinant Pycnoporus sanguineus laccase[J]. Journal of Beijing Forestry University, 2010, 32(6): 125-129.
      [8]HAN Xu, ZHAO Min, LU Lei. Optimization of bilirubin oxidase production from Myrothecium verrucaria and its application in dye decolorization.[J]. Journal of Beijing Forestry University, 2010, 32(4): 265-270.
      [9]WANG Xing-zu, CHENG Xiang, ZHENG Hui, SUN De-zhi. Autocatalysis in biological decolorization of Reactive Black 5 under anaerobic condition.[J]. Journal of Beijing Forestry University, 2009, 31(3): 135-139.
      [10]SONG Xiao-shuang, ZHAO Min, LIU Gui-feng, WANG Yu-cheng, YANG Qian. Cloning and sequence analysis of laccase gene fragments from Climacocystis borealis[J]. Journal of Beijing Forestry University, 2005, 27(5): 59-64.
    • Cited by

      Periodical cited type(11)

      1. 陈晓林,陈亚鹏,李卫红,王玉阳. 干旱区不同地下水埋深下胡杨细根空间分布特征. 植物科学学报. 2018(01): 45-53 .
      2. 王琪,容丽. 环境影响下植物根系的生长分布特征研究进展. 贵阳学院学报(自然科学版). 2015(04): 61-66 .
      3. 杨婵婵,李宏,郭光华. 红枣中龄期吸收根和输导根空间分布特征. 北京农业. 2013(09): 30-32 .
      4. 王磊,马英杰,赵经华,洪明,游磊. 干旱区滴灌核桃树有效吸水根系的分布与模拟研究. 节水灌溉. 2013(10): 17-20 .
      5. 荐圣淇,赵传燕,方书敏,余凯,彭守璋,柳逸月,李彦甫. 基于地理信息技术油松(Pinus tabuliformis)根长密度估算及空间分布特征分析. 干旱区地理. 2012(04): 599-606 .
      6. 田盼盼,董新光,姚鹏亮,谢美玲. 干旱区不同灌溉方式下枣树根系分布特性研究. 水资源与水工程学报. 2012(01): 102-105 .
      7. 叶茂,徐海量,王晓峰,申瑞新. 塔里木河下游阿拉干断面胡杨根系空间分布规律研究. 西北植物学报. 2011(04): 801-807 .
      8. 李建林,冯起,司建华,常宗强,巨登三. 极端干旱区胡杨根系分布对土壤水分的响应. 干旱区资源与环境. 2009(11): 186-190 .
      9. 杨胜利,刘洪禄,郝仲勇,吴文勇. 畦灌条件下樱桃树根系的空间分布特征. 农业工程学报. 2009(S1): 34-38 .
      10. 李建林,冯起,司建华,常宗强,巨登三,郭巧玲. 极端干旱区胡杨根系吸水的二维数学模型. 生态学杂志. 2009(06): 1188-1193 .
      11. 冯起,司建华,李建林,席海洋. 胡杨根系分布特征与根系吸水模型建立. 地球科学进展. 2008(07): 765-772 .

      Other cited types(10)

    Catalog

      Article views (845) PDF downloads (45) Cited by(21)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return