• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chen Beibei, Yang Hao, Jiang Jun. Leaf N and P resorption and stoichiometry characteristics of main tree species in the plain afforestation area of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(7): 8-15. DOI: 10.12171/j.1000-1522.20210055
Citation: Chen Beibei, Yang Hao, Jiang Jun. Leaf N and P resorption and stoichiometry characteristics of main tree species in the plain afforestation area of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(7): 8-15. DOI: 10.12171/j.1000-1522.20210055

Leaf N and P resorption and stoichiometry characteristics of main tree species in the plain afforestation area of Beijing

More Information
  • Received Date: February 18, 2021
  • Revised Date: April 20, 2021
  • Accepted Date: July 04, 2022
  • Available Online: July 06, 2022
  • Published Date: July 24, 2022
  •   Objective  Based on the analysis of leaf nitrogen (N) and phosphorus (P) reabsorption and ecological stoichiometry characteristics of the main tree species in the plain afforestation area of Beijing, the ecological adaptation and nutrient utilization mechanism of different tree species were investigated.
      Method  Six tree species (Robinia pseudoacacia, Ailanthus altissima, Salix matsudana, Populus tomentosa, Fraxinus chinensis and Pinus tabuliformis) were taken as the research objects, the contents of N and P in fresh leaves and leaf litter were determined, the N and P reabsorption efficiency was calculated and also their relationships with leaf and soil nutrient indices were analyzed.
      Result  The leaf N content of Robinia pseudoacacia and P content of Salix matsudana were the highest; the leaf N∶P ratio of Fraxinus chinensis was significantly higher than that of other tree species (P < 0.05), while the leaf N∶P ratio of Populus tomentosa was the lowest. There was no significant difference among Robinia pseudoacacia, Ailanthus altissima, Salix matsudana and Pinus tabuliformis. The contents of N and P, and N∶P ratio in leaf litter of different tree species were significantly different from fresh leaves. The N reabsorption of Robinia pseudoacacia leaves and the P reabsorption of Ailanthus altissima leaves were significantly higher than those of other tree species. For most tree species, there was a significant negative correlation between nutrient content of leaf litter and N or P resorption.
      Conclusion  The study shows that the growth of Robinia pseudoacacia, Salix matsudana, Fraxinus chinensis and Pinus tabuliformis was restricted by P content, the growth of Ailanthus altissima and Populus tomentosa was restricted by N content. Therefore, the main afforestation tree species can adapt to nutrient restriction environment through leaf N and P resorption. These findings suggest that measures such as forest structure adjustment, leaf litter returning to woodland, artificial supplementary planting and fertilization should be taken to improve the nutrient limitation in plain forests.
  • [1]
    Aerts R. Nutrient resorption from senescing leaves of perennials: are there general patterns?[J]. Journal of Ecology, 1996, 84: 597−608. doi: 10.2307/2261481
    [2]
    Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 1999, 30: 61−67.
    [3]
    Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
    [4]
    Pugnaire F I, Chapin III F S. Controls over nutrient resorption from leaves of evergreen Mediterranean species[J]. Ecology, 1993, 74(1): 124−129. doi: 10.2307/1939507
    [5]
    Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints interrestrial and freshwater food webs[J]. Nature, 2000, 408: 578−580. doi: 10.1038/35046058
    [6]
    Campo J. Shift from ecosystem P to N limitation at precipitation gradient in tropical dry forests at Yucatan, Mexico[J/OL]. Environmental Research Letters, 2006, 11(9): 095006[2021−01−15]. https://iopscience.iop.org/article/10.1088/1748-9326/11/9/095006.
    [7]
    邓浩俊, 陈爱民, 严思维, 等. 不同林龄新银合欢重吸收率及其C∶N∶P 化学计量特征[J]. 应用与环境生物学报, 2015, 21(3): 522−527. doi: 10.3724/sp.j.1145.2014.11032

    Deng H J, Chen A M, Yan S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages of Leucaena leucocephala[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(3): 522−527. doi: 10.3724/sp.j.1145.2014.11032
    [8]
    刘宏伟, 刘文丹, 王微, 等. 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征[J]. 生态学报, 2015, 35(12): 4071−4080.

    Liu H W, Liu W D, Wang W, et al. Leaf traits and nutrient resorption of major woody species in the karst limestone area of Chongqing[J]. Acta Ecologica Sinica, 2015, 35(12): 4071−4080.
    [9]
    刘若莎, 王冬梅. 黄土高原高寒区不同人工林土壤养分及生态化学计量特征[J]. 北京林业大学学报, 2021, 43(1): 88−95. doi: 10.12171/j.1000-1522.20200149

    Liu R S, Wang D M. Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(1): 88−95. doi: 10.12171/j.1000-1522.20200149
    [10]
    闫帮国, 何光熊, 史亮涛, 等. 元谋干热河谷燥红土和变性土上植物叶片的元素含量及其重吸收效率[J]. 应用生态学报, 2016, 27(4): 1039−1045. doi: 10.13287/j.1001-9332.201604.002

    Yan B G, He G X, Shi L T, et al. Element concentration in leaves and nutrient resorption efficiency on dry-red soil and vertisols in dry and hot valley in Yuanmou[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1039−1045. doi: 10.13287/j.1001-9332.201604.002
    [11]
    贺静雯, 刘颖, 余杭, 等. 干热河谷优势灌木养分重吸收率及其C∶N∶P化学计量特征[J]. 北京林业大学学报, 2020, 42(1): 18−26. doi: 10.12171/j.1000-1522.20190185

    He J W, Liu Y, Yu H, et al. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18−26. doi: 10.12171/j.1000-1522.20190185
    [12]
    Drenovsky R E, Koehler C E, Skelly K, et al. Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees[J]. Oecologia, 2013, 171(1): 39−50. doi: 10.1007/s00442-012-2396-7
    [13]
    Han W, Fang J Y, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
    [14]
    Güsewell, S. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation[J]. Functional Ecology, 2005, 19: 344−354. doi: 10.1111/j.0269-8463.2005.00967.x
    [15]
    Zeng Q C, Liu Y, Fang Y, et al. Impact of vegetation restoration on plants and soil C: N: P stoichiometry on the Yunwu Mountain Reserve of China[J]. Ecological Engineering, 2017, 109: 92−100. doi: 10.1016/j.ecoleng.2017.10.003
    [16]
    Vitousek P M, Turner D R, Parton W J, et al. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models[J]. Ecology, 1994, 75: 418−429. doi: 10.2307/1939545
    [17]
    Kobe R K, Lepczyk C A, Iyer M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set[J]. Ecology, 2005, 86: 2780−2792. doi: 10.1890/04-1830
    [18]
    Zhang H, Guo W, Yu M, et al. Latitudinal patterns of leaf N, P stoichiometry and nutrient resorption of Metasequoia glyptostroboides along the eastern coastline of China[J]. Science of the Total Environment, 2018, 618: 1−6. doi: 10.1016/j.scitotenv.2017.11.030
    [19]
    Qiu X C, Wang H B, Peng D L, et al. Thinning drives C∶N∶P stoichiometry and nutrient resorption in Larix principis-rupprechtii plantations in North China[J/OL]. Forest Ecology and Management, 2020, 462:117984[2021−01−16]. http://www.socolar.com/Article/Index?aid=100079867426&jid=100000003373.
    [20]
    申奥, 朱教君, 闫涛, 等. 辽东山区主要阔叶树种叶片养分含量和再吸收对落叶时间的影响[J]. 植物生态学报, 2018, 42(5): 573−584. doi: 10.17521/cjpe.2018.0041

    Shen A, Zhu J J, Yan T, et al. Effects of leaf nutrient concentration and resorption on leaf falling time of dominant broadleaved species in a montane region of eastern Liaoning Province, China[J]. Chinese Journal of Plant Ecology, 2018, 42(5): 573−584. doi: 10.17521/cjpe.2018.0041
    [21]
    宁秋蕊, 李守中, 姜良超, 等. 亚热带红壤侵蚀区马尾松针叶养分含量及再吸收特征[J]. 生态学报, 2016, 36(12): 3510−3517. doi: 10.5846/stxb201506301380

    Ning Q R, Li S Z, Jiang L C, et al. Foliar nutrient content and resorption efficiency of Pinus massoniana in the subtropical red soil erosion region[J]. Acta Ecologica Sinica, 2016, 36(12): 3510−3517. doi: 10.5846/stxb201506301380
    [22]
    北京市园林绿化局. 新一轮百万亩造林为北京再添新绿[J]. 国土绿化, 2019(3): 16−21.

    Beijing Municipal Bureau of Landscape and Greening. A new round of afforestation of 1 million mu adds new green to Beijing[J]. Land Greening, 2019(3): 16−21.
    [23]
    姜俊, 陆元昌, 秦永胜, 等. 北京平原地区不同人工林叶片−凋落物−土壤生态化学计量特征[J]. 生态环境学报, 2020, 29(4): 702−708.

    Jiang J, Lu Y C, Qin Y S, et al. Ecological stoichiometric characteristics of leaf-litter-soil for four dominant tree species in plain afforestation area, Beijing[J]. Ecology and Environmental Sciences, 2020, 29(4): 702−708.
    [24]
    Norby R J, Long T M, Hartz-Rubin J S, et al. Nitrogen resorption in senescing tree leaves in a warmer, CO2-enriched atmosphere[J]. Plant and Soil, 2000, 224: 15−29. doi: 10.1023/A:1004629231766
    [25]
    中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科技出版社, 1978.

    Institute of Soil Science, Chinese Academy of Sciences. The analysis of soil physical-chemical properties[M]. Shanghai: Shanghai Scientific & Technical Publishers,1978.
    [26]
    Milla R, Castro-Díez P, Maestro-Martínez M, et al. Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants?[J]. Plant and Soil, 2005, 278: 303−313. doi: 10.1007/s11104-005-8770-z
    [27]
    赵琼, 曾德慧. 林木生长氮磷限制的诊断方法研究进展[J]. 生态学杂志, 2009, 28(1): 122−128. doi: 10.13292/j.1000-4890.2009.0057

    Zhao Q, Zeng D H. Diagnosis methods of N and P limitation to tree growth: a review[J]. Chinese Journal of Ecology, 2009, 28(1): 122−128. doi: 10.13292/j.1000-4890.2009.0057
    [28]
    Güsewell S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266.
    [29]
    王风芹, 田丽青, 宋安东, 等. 华北刺槐林与自然恢复植被土壤微生物量碳、氮含量四季动态[J]. 林业科学, 2015, 51(3): 16−24.

    Wang F Q, Tian L Q, Song A D, et al. Seasonal dynamics of microbial biomass carbon and nitrogen in soil of Robinia pseudoacacia forests and near-naturally restored vegetation in northern China[J]. Scientia Silvae Sinicae, 2015, 51(3): 16−24.
    [30]
    del Arco J M, Escudero A, Garrido M V. Effects of site characteristics on nitrogen retranslocation from senescing leaves[J]. Ecology, 1991, 72: 701−708. doi: 10.2307/2937209
    [31]
    Sardans J, Penuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiology, 2012, 160(4): 1741−1761. doi: 10.1104/pp.112.208785
    [32]
    Luyssaert S, Staelens J, de Schrijver A. Does the commonly used estimator of nutrient resorption in tree foliage actually measure what it claims to?[J]. Oecologia, 2005, 144(2): 177−186. doi: 10.1007/s00442-005-0085-5
    [33]
    Killingbeck K T. Nutrients in senesced leaves: keys to the aearch for potential resorption and resorption proficiency[J]. Ecology, 1996, 77(6): 1716−1727. doi: 10.2307/2265777
    [34]
    Wright I J, Westoby M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species[J]. Functional Ecology, 2010, 17(1): 10−19.
    [35]
    Lü X T, Reed S C, Yu Q, et al. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions[J]. Plant and Soil, 2016, 398(1/2): 111−120.
    [36]
    An Y, Wan S, Zhou X, et al. Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming[J]. Global Change Biology, 2005, 11: 1733−1744. doi: 10.1111/j.1365-2486.2005.01030.x
    [37]
    Vergutz L, Manzoni S, Porporato A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 2012, 82(2): 205−220. doi: 10.1890/11-0416.1
    [38]
    Zhang H, Wang J N, Wang J Y, et al. Tree stoichiometry and nutrient resorption along a chronosequence of Metasequoia glyptostroboides forests in coastal China[J]. Forest Ecology and Management, 2018, 430: 445−450. doi: 10.1016/j.foreco.2018.08.037
    [39]
    郭二辉, 方晓, 马丽, 等. 河岸带农田不同恢复年限对土壤碳氮磷生态化学计量特征的影响: 以温榆河为例[J]. 生态学报, 2020, 40(11): 3785−3794. doi: 10.5846/stxb201906191292

    Guo E H, Fang X, Ma L, et al. Effects of different recovery years on the ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in riparian farmland: a case study of Wenyu River[J]. Acta Ecologica Sinica, 2020, 40(11): 3785−3794. doi: 10.5846/stxb201906191292
  • Cited by

    Periodical cited type(7)

    1. 刘祖英, 王兵, 赵雨森, 牛香. 典型区域退耕还林工程生态区划. 北京林业大学学报. 2018(03): 93-100 . 本站查看
    2. 刘锡辉, 卢紫君, 陈世清. 南方林业差异化发展策略. 林业与环境科学. 2018(03): 90-96 .
    3. Hua ZHAO, Yong LIU, Longde LIU, Jihui SUN, Yongshun GU. Quantitative Classification of Forestry Division in Ceheng County. Asian Agricultural Research. 2013(07): 97-102+107 .
    4. 朱小敏, 赵跃中, 姚延梼. 基于GIS的太谷县林业发展区划研究. 中国城市林业. 2013(02): 31-34 .
    5. 黄杜娟. 黔西南州林业发展区划研究. 经营管理者. 2013(27): 82 .
    6. 孙发明, 薛达元, 郭泺, 戴蓉. 云南省元阳县林业资源评价与林业区划. 国土与自然资源研究. 2013(04): 89-93 .
    7. 赵华, 刘勇, 刘隆德, 孙吉慧, 顾永顺. 贵州省册亨县林业发展区划数量化划分研究. 林业资源管理. 2012(05): 111-118 .

    Other cited types(3)

Catalog

    Article views (742) PDF downloads (80) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return