• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Lu Yi, Mu Changcheng, Gao Xu, Liang Daosheng. Effects of forest type and stand age on ecosystem carbon storage of plantations in Nenjiang Sandy Land of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 16-27. DOI: 10.12171/j.1000-1522.20220294
Citation: Lu Yi, Mu Changcheng, Gao Xu, Liang Daosheng. Effects of forest type and stand age on ecosystem carbon storage of plantations in Nenjiang Sandy Land of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 16-27. DOI: 10.12171/j.1000-1522.20220294

Effects of forest type and stand age on ecosystem carbon storage of plantations in Nenjiang Sandy Land of northeastern China

More Information
  • Received Date: July 17, 2022
  • Revised Date: September 30, 2022
  • Accepted Date: July 23, 2023
  • Available Online: July 25, 2023
  • Objective 

    This study aimed to reveal the influencing laws and mechanisms of forest types and stand age on the carbon storage of sand fixation plantation ecosystem in the Nenjiang River Basin of northeastern China in temperate semi-arid regions, and to provide a scientific basis for the practice of carbon sink management in sandy plantations.

    Method 

    Relative growth equations, carbon and nitrogen analyzer were used to simultaneously estimate the ecosystem carbon stocks (vegetation and soil), annual net carbon sequestration of vegetation and related environmental factors (soil moisture content, organic matter, total nitrogen, and so on) in two kinds of plantations with a chronosequences of young forests, middle-aged forests, and mature forests of 11, 30 and 45 years old Mongolian pine (Pinus sylvestris var. mongolica) plantation (Ps); 6, 15 and 26 years old Populus × xiaohei plantation (Px) and 28 years old natural Siberian elm (Ulmus pumila) forest (Up) at sand dune sites, and to determine the influencing law and mechanism of forest types and ages on the ecosystem carbon storage.

    Result 

    (1) The vegetation carbon storage of Ps and Px increased significantly than Up, which of Ps was the highest among three forest types. Moreover, the vegetation carbon storage of Ps and Px increased with the forest age, but the changing trends of annual net carbon sequestration (ANCS) of vegetation with forest age were different between Ps and Px, the former is young forests > mid-aged forests = mature forests; the latter increased with forest age. (2) In terms of soil carbon sequestration, Px was better than Up, while Ps was less than Up; moreover, the changing law of soil carbon storage with forest age in Ps and Px was also different, increasing first and then stabilizing and increasing, respectively. And both forest types all changed the spatial distribution pattern of soil carbon storage. In the horizontal space, Ps reduced the carbon storage in the upper and lower soil layers, and its soil carbon storage increased with the forest age in the upper soil layer; while Px increased the soil carbon storage in the middle and upper soil layer, and its carbon storage increased with the forest age in the bottom soil layer. In the vertical space, the vertical stratification of soil carbon storage in young forests was evident and tended to weaken in mature forest stage. (3) In terms of ecosystem carbon sequestration, Ps and Px were similar and higher than Up. The ecosystem carbon storage of both Ps and Px increased with stand age. However, the distribution patterns of ecosystem carbon stocks for Ps and Px were mostly dominated by vegetation, which was clearly different from that of Up dominated by soil. (4) The ecosystem carbon storage and ANCS of Ps were mainly controlled by soil total nitrogen. The ecosystem carbon storage and ANCS of Px were mainly controlled by soil organic matter.

    Conclusion 

    Therefore, the establishment of Ps and Px could not only fix sand, but also significantly increase forest carbon sink in the temperate Nenjiang Sandy Land, which is dominated by vegetation carbon sequestration. Therefore, in the management of carbon sinks in sandy plantations, it is necessary to strengthen the maintenance of the vegetation carbon pool as well as to focus on the long-term carbon sequestration potential of the soil.

  • [1]
    Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change[J]. Global Change Biology, 1998, 4: 185−198. doi: 10.1046/j.1365-2486.1998.00125.x
    [2]
    Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2016, 292: 2320−2322.
    [3]
    Grnzweig J M, Lin T, Rotenberg E, et al. Carbon sequestration in arid-land forest[J]. Global Change Biology, 2003, 9: 791−799. doi: 10.1046/j.1365-2486.2003.00612.x
    [4]
    Xu B, Guo Z D, Piao S L, et al. Biomass carbon stocks in China’s forests between 2000 and 2050: a prediction based on forest biomass-age relationships[J]. Science China Life Sciences, 2010, 53(7): 776−783. doi: 10.1007/s11427-010-4030-4
    [5]
    Huang L, Liu J Y, Shao Q Q, et al. Carbon sequestration by forestation across China: past, present, and future[J]. Renewable and Sustainable Energy Reviews, 2012, 16(2): 1291−1299. doi: 10.1016/j.rser.2011.10.004
    [6]
    Nosetto M D, Jobbágy E G, Paruelo J M. Carbon sequestration in semi-arid rangelands: comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia[J]. Journal of Arid Environments, 2006, 67: 142−156. doi: 10.1016/j.jaridenv.2005.12.008
    [7]
    Wang K B, Deng L, Ren Z P, et al. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China[J]. Journal of Arid Land, 2016, 8(2): 207−220. doi: 10.1007/s40333-015-0091-3
    [8]
    Lan Z L, Zhao Y, Zhang J G, et al. Long-term vegetation restoration increases deep soil carbon storage in the northern Loess Plateau[J]. Scientifc Reports, 2021, 11: 13758−13769. doi: 10.1038/s41598-021-93157-0
    [9]
    Li D J, Niu S L, Luo Y Q. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis[J]. New Phytologist, 2012, 195(1): 172−181. doi: 10.1111/j.1469-8137.2012.04150.x
    [10]
    Hong S B, Yin G D, Piao S L, et al. Divergent responses of soil organic carbon to afforestation[J]. Nature Sustainability, 2020, 3(9): 694−700. doi: 10.1038/s41893-020-0557-y
    [11]
    Guo L B, Gifford R M. Soil carbon stocks and land use change: a meta analysis[J]. Global Change Biology, 2002, 8: 345−360. doi: 10.1046/j.1354-1013.2002.00486.x
    [12]
    Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation[J]. Forest Ecology and Management, 2002, 168: 241−257.
    [13]
    IPCC. Land use, land-use change, and forestry. special report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2000.
    [14]
    Matos E S, Freese D, Ślązak A, et al. Organic-carbon and nitrogen stocks and organic-carbon fractions in soil under mixed pine and oak forest stands of different ages in NE Germany[J]. Journal of Plant Nutrition and Soil Science, 2010, 173: 654−661. doi: 10.1002/jpln.200900046
    [15]
    Penne C, Ahrends B, Deurer M, et al. The impact of the canopy structure on the spatial variability in forest floor carbon stocks[J]. Geoderma, 2010, 158: 282−297. doi: 10.1016/j.geoderma.2010.05.007
    [16]
    Kaul M, Mohren G M J, Dadhwal V K. Carbon storage and sequestration potential of selected tree species in India[J]. Mitigation and Adaptation Strategies for Global Change, 2010, 15: 489−510. doi: 10.1007/s11027-010-9230-5
    [17]
    Zhang Q Z, Wang C K, Wang X C, et al. Carbon concentration variability of 10 Chinese temperate tree species[J]. Forest Ecology and Management, 2009, 258(5): 722−727. doi: 10.1016/j.foreco.2009.05.009
    [18]
    Jandl R, Lindner M, Vesterdal L, et al. How strongly can forest management influence soil carbon sequestration[J]. Geoderma, 2007, 137: 253−268. doi: 10.1016/j.geoderma.2006.09.003
    [19]
    Vesterdal L, Elberling B, Christiansen J R, et al. Soil respiration and rates of soil carbon turnover differ among six common European tree species[J]. Forest Ecology and Management, 2012, 264: 185−196. doi: 10.1016/j.foreco.2011.10.009
    [20]
    Finzi A C, Breemen N V, Canham C D. Canopy tree soil interactions within temperate forests: species effects on soil carbon and nitrogen[J]. Ecological Applications, 1998, 8(2): 440−446.
    [21]
    Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2): 423−436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
    [22]
    Binkley D. A hypothesis about the interaction of tree dominance and stand production through stand development[J]. Forest Ecology and Management, 2004, 190: 265−271. doi: 10.1016/j.foreco.2003.10.018
    [23]
    Taylor A R, Wang J R, Chen H Y H. Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia, Canada[J]. Canadian Journal of Forest Research-revue Canadienne de Recherche Forestiere, 2007, 37: 2260−2269. doi: 10.1139/X07-080
    [24]
    Pregitzer K S, Eusirchen E S. Carbon cycling and storage in world forests: biome patterns related to forest age[J]. Global Change Biology, 2004, 10: 2052−2077. doi: 10.1111/j.1365-2486.2004.00866.x
    [25]
    Nam-Jin N, Yowhan S, Sue-Kyoung L, et al. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea[J]. Science China Life Sciences, 2010, 53(7): 822−830. doi: 10.1007/s11427-010-4018-0
    [26]
    Cuong L, Hung B, Bolanle-Ojo O T, et al. Biomass and carbon storage in an age-sequence of Acacia mangium plantation forests in southeastern region, Vietnam[J]. Forest Systems, 2020, 29(2): e009. doi: 10.5424/fs/2020292-16685
    [27]
    Li T J, Liu G B. Age-related changes of carbon accumulation and allocation in plants and soil of black locust forest on Loess Plateau in Ansai County, Shaanxi Province of China[J]. Chinese Geographical Science, 2014, 24(4): 414−422. doi: 10.1007/s11769-014-0704-3
    [28]
    Ma Q L, Wang X Y, Chen F, et al. Carbon sequestration of sand-fixing plantation of Haloxylon ammodendron in Shiyang River Basin: storage, rate and potential[J]. Global Ecology and Conservation, 2021, 28: e01607. doi: 10.1016/j.gecco.2021.e01607
    [29]
    Cao J J, Gong Y F, Adamowski J F, et al. Effects of stand age on carbon storage in dragon spruce forest ecosystems in the upper reaches of the Bailongjiang River Basin, China[J]. Scientific Reports, 2019, 9: 3005−3016. doi: 10.1038/s41598-019-39626-z
    [30]
    王树力, 胡天然, 赵雨森, 等. 齐齐哈尔市嫩江沙地沙化土地的成因、类型、分布及治理技术[J]. 林业科技, 2004, 29(5): 15−17. doi: 10.3969/j.issn.1001-9499.2004.05.005

    Wang S L, Hu T R, Zhao Y S, et al. Causes, types, distribution and control techniques of desertified land in Nenjiang Sandy Land of Qiqihar City[J]. Forestry Science and Technology, 2004, 29(5): 15−17. doi: 10.3969/j.issn.1001-9499.2004.05.005
    [31]
    孙虎, 李凤日, 孙美欧, 等. 松嫩平原杨树人工林生态系统碳储量研究[J]. 北京林业大学学报, 2016, 38(5): 33−41. doi: 10.13332/j.1000-1522.20150336

    Sun H, Li F R, Sun M O, et al. Carbon storage of poplar plantations in Songnen Plain, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(5): 33−41. doi: 10.13332/j.1000-1522.20150336
    [32]
    王亚辉, 牟长城, 杨智慧, 等. 透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响[J]. 北京林业大学学报, 2021, 43(10): 54−64. doi: 10.12171/j.1000-1522.20200361

    Wang Y H, Mu C C, Yang Z H, et al. Effects of release cutting intensity on the carbon storage of Korean pine forests by planting conifer and reserving broadleaved trees in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(10): 54−64. doi: 10.12171/j.1000-1522.20200361
    [33]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.

    Bao S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2000.
    [34]
    杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11): 83−90.

    Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11): 83−90.
    [35]
    李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2012.

    Li H S. Modern plant physiology.(3rd edition)[M]. Beijing: Higher Education Press, 2012.
    [36]
    袁立敏, 闫德仁, 王熠青, 等. 沙地樟子松人工林碳储量研究[J]. 内蒙古林业科技, 2011, 37(1): 9−13. doi: 10.3969/j.issn.1007-4066.2011.01.003

    Yuan L M, Yan D R, Wang Y Q, et al. Carbon storage of Pinus sylvestris var. mongolica Litv. plantation in sandy land[J]. Journal of Inner Mongolia Forestry Science and Technology, 2011, 37(1): 9−13. doi: 10.3969/j.issn.1007-4066.2011.01.003
    [37]
    Schulze E D. Carbon and nitrogen cycling in European forest ecosystems[J]. Agricultural and Forest Meteorology, 2004, 124: 135−136. doi: 10.1016/j.agrformet.2004.01.001
    [38]
    Marris E. Old forests capture plenty of carbon[J]. Nature, 2008, 455: 213−215. doi: 10.1038/nature07276
    [39]
    周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, 24(5): 518−522. doi: 10.3321/j.issn:1005-264X.2000.05.002

    Zhou Y R, Yu Z L, Zhao S D. Carbon storage and budget of major Chinese forest types[J]. Acta Phytoecologica Sinica, 2000, 24(5): 518−522. doi: 10.3321/j.issn:1005-264X.2000.05.002
    [40]
    何浩, 潘耀忠, 朱文泉, 等. 中国陆地生态系统服务价值测量[J]. 应用生态学报, 2005, 16(6): 1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029

    He H, Pan Y Z, Zhu W Q, et al. Measurement of terrestrial ecosystem service value in China[J]. Chinese Journal of Applied Ecology, 2005, 16(6): 1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029
    [41]
    李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报, 2001, 56(4): 379−389. doi: 10.11821/xb200104001

    Li Y P, Ji J J. Simulations of carbon exchange between global terrestrial ecosystem and the atmosphere[J]. Acta Geographica Sinica, 2001, 56(4): 379−389. doi: 10.11821/xb200104001
    [42]
    Wu G L, Liu Y, Tian F P, et al. Legumes functional group promotes soil organic carbon and nitrogen storage by increasing plant diversity[J]. Land Degradation and Development, 2017, 28(4): 1336−1344. doi: 10.1002/ldr.2570
    [43]
    Hu Y L, Zeng D H, Fan Z P, et al. Changes in ecosystem carbon stocks following grassland afforestation of semiarid sandy soil in the southeastern Keerqin Sandy Lands, China[J]. Journal of Arid Environments, 2008, 72(12): 2193−2200. doi: 10.1016/j.jaridenv.2008.07.007
    [44]
    Wang Y F, Liu L, Yue F X, et al. Dynamics of carbon and nitrogen storage in two typical plantation ecosystems of different stand ages on the Loess Plateau of China[J]. PeerJ, 2019, 7: 1−20.
    [45]
    Vesterdal L, Ritter E, Gundersen P. Change in soil organic carbon following afforestation of former arable land[J]. Forest Ecology and Management, 2002, 169: 137−147. doi: 10.1016/S0378-1127(02)00304-3
    [46]
    Kaye J P, Sigrid C P, Kaye M W, et al. Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees[J]. Ecology, 2000, 81(12): 3267−3273. doi: 10.2307/177491
    [47]
    韩美娜, 魏亚伟, 秦胜金, 等. 沙地樟子松人工林碳库动态及其分配特征[J]. 生态学杂志, 2015, 34(7): 1798−1803. doi: 10.13292/j.1000-4890.20150616.004

    Han M N, Wei Y W, Qin S J, et al. Carbon storage dynamics and its distribution pattern in Pinus sylvestris var. mongolica plantation in sandy land[J]. Chinese Journal of Ecology, 2015, 34(7): 1798−1803. doi: 10.13292/j.1000-4890.20150616.004
    [48]
    淑敏, 姜涛, 王东丽, 等. 科尔沁沙地不同林龄樟子松人工林土壤生态化学计量特征[J]. 干旱区研究, 2018, 35(4): 789−795.

    Shu M, Jiang T, Wang D L, et al. Soil eco-logical stoichiometry under the planted of Pinus sylvestris var. mongolica forests with different stand ages in the Horqin Sandy Land[J]. Arid Zone Research, 2018, 35(4): 789−795.
    [49]
    Richter D, Markewitz D, Trumbore S, et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest[J]. Nature, 1999, 400: 56−58.
    [50]
    Johnson D W. Effects of forest management on soil carbon storage[J]. Water, Air, and Soil Pollution, 1992, 64: 83−120. doi: 10.1007/BF00477097
    [51]
    刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437−5448.

    Liu S R, Wang H, Luan J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5437−5448.
    [52]
    Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185
    [53]
    白晓霞, 艾海舰. 榆林沙地樟子松人工林土壤养分变化特征[J]. 西部林业科学, 2020, 49(3): 80−85. doi: 10.16473/j.cnki.xblykx1972.2020.03.013

    Bai X X, Ai H J. Soil nutrients variability of Pinus sylvestris var. mongolica plantations in desertificated land of Yulin[J]. Journal of West China Forestry Science, 2020, 49(3): 80−85. doi: 10.16473/j.cnki.xblykx1972.2020.03.013
    [54]
    阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征[J]. 植物生态学报, 2010, 34(1): 48−57.

    Yan E R, Wang X H, Guo M, et al. C∶N∶P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 48−57.
    [55]
    Peichl M, Arain M A. Aboveground and below ground ecosystem biomass carbon pools in an age sequeance of temperate pine plantation forests[J]. Agricultural and Forest Meteorology, 2006, 140: 51−53. doi: 10.1016/j.agrformet.2006.08.004
  • Cited by

    Periodical cited type(11)

    1. 何秋玲,陈晓玉,杨申明,徐兴丽,向雪梅,王振吉. 无花果原花青素超声辅助提取工艺优化及抗氧化性研究. 生物化工. 2024(04): 1-7+12 .
    2. 林赛婷,田君飞,史荣祥,王欣莹,陈俊宇,王传浩,万小芳,陈广学. 微波辅助低共熔溶剂高效提取油茶壳原花青素的工艺优化. 应用化工. 2023(02): 398-403 .
    3. 焦思宇,许丁予,姚先超,刘鑫,林春燕,何丽欣,林日辉. 壳聚糖微花对原花青素吸附机理的研究. 食品工业科技. 2023(18): 43-49 .
    4. 郝丽,杨志伟. 超声波-酶法提取紫甘蓝花青素条件优化及其抗氧化和消化酶抑制活性研究. 食品安全质量检测学报. 2023(22): 295-304 .
    5. 颜雪琴,蔡金燕. 超临界CO_2萃取黑土豆原花青素及抗氧化性研究. 当代化工. 2023(12): 2803-2807 .
    6. 詹昕,赵芳芳,高志强,杨珍平,杨文平. 喷施有机硒肥对黑糯玉米籽粒硒及花青素含量的影响. 山西农业科学. 2022(02): 199-205 .
    7. 熊颖,禹霖,柏文富,李建挥,严佳文,聂东伶,吴思政. 不同品种蓝莓果实品质特征和抗氧化能力及多酚组成的比较. 中南林业科技大学学报. 2022(02): 119-128 .
    8. 汪建红. 双水相辅助内部沸腾法提取桂花叶黄酮. 食品研究与开发. 2022(04): 22-28 .
    9. 高琪,陈志远,刘艳妮. 皂素废水改良蓝莓土壤的重金属安全性评价. 中国果树. 2021(05): 33-37+109 .
    10. 吕筱,郑天元,韦新月,窦子珊,高晨佳,蔡冉,孟琬星,王汝华. 花生红衣中原花青素的提取工艺与活性研究. 农产品加工. 2021(09): 27-31 .
    11. 周海旭,谢美玉,高晗,李波,苏同超,李忠海. 樟树叶木脂素和多酚超声辅助同步提取工艺优化. 食品与机械. 2020(10): 143-148 .

    Other cited types(8)

Catalog

    Article views (516) PDF downloads (93) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return