• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Song Siyuan, Jing Xuehui, Wang Yifu. Circumferential heterogeneity and influencing factors of radial growth of Larix olgensis in Lesser Khingan Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 47-58. DOI: 10.12171/j.1000-1522.20230177
Citation: Song Siyuan, Jing Xuehui, Wang Yifu. Circumferential heterogeneity and influencing factors of radial growth of Larix olgensis in Lesser Khingan Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 47-58. DOI: 10.12171/j.1000-1522.20230177

Circumferential heterogeneity and influencing factors of radial growth of Larix olgensis in Lesser Khingan Mountains of northeastern China

More Information
  • Received Date: July 09, 2023
  • Revised Date: August 22, 2023
  • Available Online: September 27, 2023
  • Objective 

    This study aimed to explore the variations and influencing factors of tree-ring width in different directions and at different heights for the management of artificial Larix olgensis forests.

    Method 

    Wilcoxon signed-rank test was used to examine the relative tree-ring width of 18 Larix olgensis trees in Dongzhelenghe Forest Farm in Langxiang, Heilongjiang Province of northeastern China. The variations of tree-ring width at different heights were compared using the weighted Voronoi diagram. The relationship between the survival radius in different directions and the variations of tree-ring width was analyzed. One-way ANOVA and descriptive statistical methods were used to analyze the relationship between light and stand age and the variations of tree-ring width.

    Result 

    (1)The differences in the average and total growth rate of 18 artificially Larix olgensis did not show significant differences in different directions as the trees aged, and the tree-ring width almost remained the same with years. (2) The coefficient of variation of the total growth rate of 7 sample trees was significantly or extremely negatively correlated with the relative height of the disk in different directions, while that of the average growth rate of 12 sample trees in the last 5 years was significantly or extremely negatively correlated with the relative height of the section in different directions. (3) There was no significant relationship between the circumferential variation characteristics of radial growth on the cross section at breast height and the directional characteristics of light intensity; the average coefficient of variation of the annual ring width of mature sample trees was the highest; there was a significant correlation between the relative annual ring width (average growth rate in the past 5 years) and the radius of the living space in all directions of the cross section at breast height of most samples.

    Conclusion 

    (1) There is no significant difference in the tree-ring width of each tree in different directions at the same height and age, and the trends of tree-ring width changes in different directions are the same. The directional variation of tree-ring width weakened with the increase of tree height. (2) Competition has a significant impact on the variation characteristics of ring width. The larger the survival radius in different directions of most trees is, the stronger their competitive ability is, and the wider their tree-rings in that direction is. In different forest ages, the average coefficient of variation of tree-ring width in all directions is higher in mature forests.

  • [1]
    沈海龙, 崔晓坤, 孙海龙, 等. 东北东部樟子松幼林生长与立地因子关系研究[J]. 森林工程, 2020, 36(3): 12−20. doi: 10.3969/j.issn.1006-8023.2020.03.003

    Shen H L, Cui X K, Sun H L, et al. Relationships between stand growth and site factors in young mongolian scots pine plantations in the eastern region of northeast China[J]. Forest Engineering, 2020, 36(3): 12−20. doi: 10.3969/j.issn.1006-8023.2020.03.003
    [2]
    Phiri D, Phiri E, Kasubika R, et al. Implication of using a fixed form factor in areas under different rainfall and soil conditions for Pinus kesiya in Zambia[J]. South Forests, 2016, 78(1): 35−39. doi: 10.2989/20702620.2015.1108614
    [3]
    Almeras T, Thibaut A, Gril J. Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees[J]. Trees, 2005, 19: 457−467. doi: 10.1007/s00468-005-0407-6
    [4]
    Visser H, van der Maaten-Theunissen M, van der Maaten E. BAI BAI bias: an evaluation of uncertainties in calculating basal area increments from cores[J/OL]. Dendrochronologia, 2023, 78: 126066[2023−09−15]. https://doi.org/10.1016/j.dendro.2023.126066.
    [5]
    Biging G S, Wensel L C. The effect of eccentricity on the estimation of basal area and basal area increment of coniferous trees[J]. Forest Science, 1988, 34(3): 621−633.
    [6]
    Sultan S E. Phenotypic plasticity for plant development, function and life history[J]. Trends in Plant Science, 2000, 5(12): 537−542. doi: 10.1016/S1360-1385(00)01797-0
    [7]
    Yamashita S, Yoshida M, Takayama S, et al. Stem-righting mechanism in gymnosperm trees deduced from limitations in compression wood development[J]. Annals of Botany, 2007, 99(3): 487−493. doi: 10.1093/aob/mcl270
    [8]
    Wilson B F, Gartner B L. Lean in red alder ( Alnus rubra) : growth stress, tension wood, and righting response[J]. Canadian Journal of Forest Research, 1996, 26(11): 1951−1956.
    [9]
    Bamber R K. The origin of growth stresses: a rebuttal[J]. IAWA Journal, 1987, 8(1): 80−84. doi: 10.1163/22941932-90001032
    [10]
    Yang J, Waugh G. Growth stress, its measurement and effects[J]. Australian Forestry, 2001, 64(2): 127−135. doi: 10.1080/00049158.2001.10676176
    [11]
    Ding A J, Xiao S C, Tian Q Y, et al. Correcting eccentric growth rings using basal area increment: a case study for a desert shrub in Northwestern China[J]. Tree-Ring Research, 2021, 77(1): 1−9.
    [12]
    卢翠香, 徐峰, 覃引鸾, 等. 人工林马尾松晚材率、年轮宽度和组织比量变异研究[J]. 广西林业科学, 2012, 41(2): 81−85.

    Lu C X, Xu F, Qin Y L, et al. Variation studies on latewood percentage, tree-ring width and tissue proportion of Pinus massoniana plantation[J]. Guangxi Forestry Science, 2012, 41(2): 81−85.
    [13]
    杨保国, 贾宏炎, 郝建, 等. 不同林龄柚木人工林心边材生长变异特征[J]. 林业科学, 2020, 56(1): 65−73. doi: 10.11707/j.1001-7488.20200107

    Yang B G, Jia H Y, Hao J, et al. Growth variation of heartwood and sapwood of teak ( Tectona grandis) plantations at different ages[J]. Scientia Silvae Sinicae, 2020, 56(1): 65−73. doi: 10.11707/j.1001-7488.20200107
    [14]
    黄荣凤, 张国盛, 鲍甫成, 等. 毛乌素沙地臭柏年轮生长动态的研究[J]. 林业科学, 2005, 41(2): 117−122. doi: 10.3321/j.issn:1001-7488.2005.02.020

    Huang R F, Zhang G S, Bao F C, et al. Dynamic analysis on tree ring growth of Sabina vulgaris grown in Mu Us Sandland[J]. Scientia Silvae Sinicae, 2005, 41(2): 117−122. doi: 10.3321/j.issn:1001-7488.2005.02.020
    [15]
    陈晶晶. 浑善达克沙地榆树径向生长及其对气候因子的响应分析[D]. 呼和浩特: 内蒙古农业大学, 2014.

    Chen J J. Analyze the response of radial growth of elm to climate factors in Otindag Sand Land[D]. Hohhot: Inner Mongolia Agricultural University, 2014.
    [16]
    赵西平, 郭明辉, 曹龙. 生长季气温对人工林落叶松生长轮宽度和密度的影响[J]. 东北林业大学学报, 2007, 35(4): 28−30. doi: 10.3969/j.issn.1000-5382.2007.04.010

    Zhao X P, Guo M H, Cao L. Effect of temperature on ring width ang ring density of Larix gmelinii plantation during growing season[J]. Journal of Northeast Forestry University, 2007, 35(4): 28−30. doi: 10.3969/j.issn.1000-5382.2007.04.010
    [17]
    崔诗梦, 向玮. 间伐与气候对长白落叶松树轮宽度的影响[J]. 林业科学, 2017, 53(12): 1−11. doi: 10.11707/j.1001-7488.20171201

    Cui S M, Xiang W. Effects of thinning and climate factors on Larix olgensis tree-ring width[J]. Scientia Silvae Sinicae, 2017, 53(12): 1−11. doi: 10.11707/j.1001-7488.20171201
    [18]
    朱飞燕. 落叶松心材变化规律及其预测模型[D]. 哈尔滨: 东北林业大学, 2018.

    Zhu F Y. The change rule and prediction model of heartwood of larch [D]. Harbin: Northeast Forestry University, 2018.
    [19]
    邱思玉. 长白落叶松人工林单木冠幅模型研究[D]. 北京: 北京林业大学, 2020.

    Qiu S Y. Individual tree grown width prediction models for Larix olgensis plantation [D]. Beijing: Beijing Forestry University, 2020.
    [20]
    李凤日. 测树学[M]. 4版. 北京: 中国林业出版社, 2019.

    Li F R. Forest measuration[M]. 4th ed. Beijing: China Forestry Publishing House, 2019.
    [21]
    吴喜之, 赵博娟. 非参数统计[M]. 5版. 北京: 中国统计出版社, 2011.

    Wu X Z, Zhao B J. Non-parametric statistics[M]. 5th ed. Beijing: China Statistical Publishing House, 2011.
    [22]
    胡文伟, 李湛. 不同融资方式下的科技企业并购绩效比较研究: 基于因子分析与Wilcoxon符号秩检验的实证分析[J]. 上海经济研究, 2019(11): 94−107. doi: 10.19626/j.cnki.cn31-1163/f.2019.11.007

    Hu W W, Li Z. A comparative study on M&A performance of technology enterprises under different financing methods: an empirical analysis based on factor analysis and Wilcoxon signed rank test[J]. Shanghai Journal of Economics, 2019(11): 94−107. doi: 10.19626/j.cnki.cn31-1163/f.2019.11.007
    [23]
    Brown G S. Point density in stems per acre[J]. New Zealand Forest Research Notes, 1965, 38: 11.
    [24]
    Stokes A, Berthier S. Irregular heartwood formation in Pinus pinaster Ait. is related to eccentric, radial, stem growth[J]. Forest Ecology and Management, 2000, 135(1): 115−121.
    [25]
    Longuetaud F, Mothe F, Leban J M, et al. Picea abies sapwood width: variations within and between trees[J]. Scandinavian Journal of Forest Research, 2006, 21(1): 41−53. doi: 10.1080/02827580500518632
    [26]
    Liang H, Huang J, Ma Q, et al. Contributions of competition and climate on radial growth of Pinus massoniana in subtropics of China[J]. Agricultural and Forest Meteorology, 2019, 274: 7−17. doi: 10.1016/j.agrformet.2019.04.014
    [27]
    韩大校, 金光泽. 地形和竞争对典型阔叶红松林不同生长阶段树木胸径生长的影响[J]. 北京林业大学学报, 2017, 39(1): 9−19. doi: 10.13332/j.1000-1522.20160218

    Han D X, Jin G Z. Influences of topography and competition on DBH growth in different growth stages in a typical mixed broadleaved-Korean pine forest, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 9−19. doi: 10.13332/j.1000-1522.20160218
    [28]
    Baribault T W, Kobe R K, Finley A O, et al. Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes[J]. Ecological Monographs, 2012, 82(2): 189−203. doi: 10.1890/11-1013.1
    [29]
    Gao H, Dong L, Li F. Modeling variation in crown profile with tree status and cardinal directions for planted Larix olgensis Henry trees in northeast China[J]. Forests, 2017, 8(5): 139. doi: 10.3390/f8050139
    [30]
    Marshall J D, Rehfeldt G E, Monserud R A. Family differences in height growth and photosynthetic traits in three conifers[J]. Tree Physiology, 2001, 21(11): 727−734. doi: 10.1093/treephys/21.11.727
    [31]
    王政权, 吴巩胜, 王军邦. 利用竞争指数评价水曲柳落叶松种内种间空间竞争关系[J]. 应用生态学报, 2000, 11(5): 641−645. doi: 10.3321/j.issn:1001-9332.2000.05.001

    Wang Z Q, Wu G S, Wang J B. Application of competition index in assessing intraspecific and interspecific spatial relations between manchurian ash and dahurian larch[J]. Chinese Journal of Applied Ecology, 2000, 11(5): 641−645. doi: 10.3321/j.issn:1001-9332.2000.05.001
    [32]
    康剑, 梁寒雪, 蒋少伟, 等. 竞争和气候对新疆阿尔泰山西伯利亚五针松树木径向生长的影响[J]. 植物生态学报, 2020, 44(12): 1195−1202. doi: 10.17521/cjpe.2020.0224

    Kang J, Liang H X, Jiang S W, et al. Effects of competition and climate on tree radial growth of Pinus sibirica in Altai Mountains, Xinjiang, China[J]. Chinese Journal of Plant Ecology, 2020, 44(12): 1195−1202. doi: 10.17521/cjpe.2020.0224
    [33]
    Kwon S, 潘磊磊, 时忠杰, 等. 不同竞争强度下的沙地樟子松天然林树木径向生长及其气候响应[J]. 生态学杂志, 2019, 38(7): 1962−1972. doi: 10.13292/j.1000-4890.201907.020

    Kwon S, Pan L L, Shi Z J, et al. Radial growth of Mongolian pine and its response to climate at different competition intensities[J]. Chinese Journal of Ecology, 2019, 38(7): 1962−1972. doi: 10.13292/j.1000-4890.201907.020
    [34]
    张春雨, 高露双, 赵亚洲, 等. 东北红豆杉雌雄植株径向生长对邻体竞争和气候因子的响应[J]. 植物生态学报, 2009, 33(6): 1177−1183. doi: 10.3773/j.issn.1005-264x.2009.06.018

    Zhang C Y, Gao L S, Zhao Y Z, et al. Response of radial growth to neighboring competition and climate factors in Taxus cuspidata[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1177−1183. doi: 10.3773/j.issn.1005-264x.2009.06.018
    [35]
    马士友. 北京地区侧柏人工林径向生长对采伐、气候因子的响应研究[D]. 北京: 北京林业大学, 2016.

    Ma S Y. Research on the response of radial growth to thinning and climatic factors for Platycladus orientalis plantation in Beijing[D]. Beijing: Beijing Forestry University, 2016.
    [36]
    苅住曻, 喜君. 树木根系的竞争作用[J]. 国外林业, 1984(1): 13−17.

    Yi Z S, Xi J. The competitive role of tree roots[J]. Foreign Forestry, 1984(1): 13−17.
    [37]
    王政权, 王军邦, 孙志虎, 等. 水曲柳苗木地下竞争与地上竞争的定量研究[J]. 生态学报, 2003, 23(8): 1512−1518. doi: 10.3321/j.issn:1000-0933.2003.08.007

    Wang Z Q, Wang J B, Sun Z H, et al. Quantitative study of below- and above-ground competitions in mandchurican ash seedlings[J]. Acta Ecologica Sinica, 2003, 23(8): 1512−1518. doi: 10.3321/j.issn:1000-0933.2003.08.007
    [38]
    Stephenson N L, Das A J, Condit R, et al. Rate of tree carbon accumulation increases continuously with tree size[J]. Nature, 2014, 507: 90−93. doi: 10.1038/nature12914
    [39]
    Chi X, Tang Z, Xie Z, et al. Effects of size, neighbors, and site condition on tree growth in a subtropical evergreen and deciduous broad-leaved mixed forest, China[J/OL]. Ecology and Evolution, 2015[2022−12−20]. https://doi.org/10.1002/ece3.1665.
    [40]
    Enquist B J, West G B, Charnov E L, et al. Erratum: allometric scalling of production and life-history variation in vascular plants[J]. Nature, 1999, 401: 907−911. doi: 10.1038/44819
    [41]
    潘磊, 王轶夫, 孙钊, 等. 长白落叶松树冠半径分布特征及其对竞争的响应[J]. 林业科学研究, 2022, 35(3): 27−37. doi: 10.13275/j.cnki.lykxyj.2022.03.004

    Pan L, Wang Y F, Sun Z, et al. Distribution characteristics of canopy radius of Larix olgensis response to competition[J]. Forest Research, 2022, 35(3): 27−37. doi: 10.13275/j.cnki.lykxyj.2022.03.004
    [42]
    Lee W K, Seo J H, Son Y M, et al. Modeling stem profiles for Pinus densiflora in Korea[J]. Forest Ecology and Management, 2003, 172(1): 69−77. doi: 10.1016/S0378-1127(02)00139-1
    [43]
    Jiang L, Liu R. Segmented taper equations with crown ratio and stand density for Dahurian Larch ( Larix gmelinii) in Northeastern China[J]. Journal of Forestry Research, 2011, 22(3): 347−352. doi: 10.1007/s11676-011-0178-4
    [44]
    曾伟生, 廖志云. 削度方程的研究[J]. 林业科学, 1997, 33(2): 32−37. doi: 10.3321/j.issn:1001-7488.1997.02.004

    Zeng W S, Liao Z Y. Study on taper function[J]. Scientia Silvae Sinicae, 1997, 33(2): 32−37. doi: 10.3321/j.issn:1001-7488.1997.02.004
  • Cited by

    Periodical cited type(8)

    1. 王溢. 基于label-free技术的青杨3个叶位叶片比较蛋白质组学分析. 华中农业大学学报. 2019(04): 8-19 .
    2. 吕晨菲,王茂思,黄唯子,杨静慧,刘艳军,黄俊轩. 蓝莓休眠花芽蛋白质双向电泳体系的建立和优化. 天津农学院学报. 2019(04): 16-19 .
    3. 王溢,邱彤,韩强,康向阳. 不同2n雌配子来源的青杨杂种三倍体与其亲本蛋白质组差异研究. 北京林业大学学报. 2018(05): 1-9 . 本站查看
    4. 安素妨,侯锦娜,王艳,鲁丹丹,李保全. 2种预处理对玉米组织全蛋白质双向电泳图谱的影响. 河南农业科学. 2018(02): 17-21 .
    5. 陈剑成,沈少炎,蔡月琴,杨德明,陈思凯,万娟,徐雯,何天友,郑郁善,陈礼光. 凹叶厚朴叶片蛋白提取及双向电泳体系的优化. 北方农业学报. 2017(02): 11-16 .
    6. 孙丹,王玉成,王超. 白桦木质部蛋白提取方法的建立. 东北林业大学学报. 2015(08): 78-81 .
    7. 陈舒博,丁彦芬,赵天鹏,吴琼,杜禹延. 植物蛋白质双向电泳样品制备研究进展. 天津农业科学. 2015(06): 7-10 .
    8. 李莹,刘淑欣,彭鸽,齐芪,刘炳梅,齐力旺,盖颖,蒋湘宁. 马尾松种子萌发与幼苗生长异养转自养生理过程研究. 北京林业大学学报. 2014(06): 9-16 . 本站查看

    Other cited types(3)

Catalog

    Article views (366) PDF downloads (54) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return