• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Zhou, Zhang Jianjun, Zhao Jiongchang, Hu Yawei, Li Yang, Wang Bo. Response of soil carbon, nitrogen and phosphorus stoichiometric characteristics of Pinus tabuliformis forests to stand age and density in the Loess Plateau region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 30-40. DOI: 10.12171/j.1000-1522.20240188
Citation: Yang Zhou, Zhang Jianjun, Zhao Jiongchang, Hu Yawei, Li Yang, Wang Bo. Response of soil carbon, nitrogen and phosphorus stoichiometric characteristics of Pinus tabuliformis forests to stand age and density in the Loess Plateau region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 30-40. DOI: 10.12171/j.1000-1522.20240188

Response of soil carbon, nitrogen and phosphorus stoichiometric characteristics of Pinus tabuliformis forests to stand age and density in the Loess Plateau region of western Shanxi Province, northern China

More Information
  • Received Date: June 10, 2024
  • Revised Date: August 05, 2024
  • Available Online: December 01, 2024
  • Objective 

    Analyzing the responses of soil carbon (C), nitrogen (N), and phosphorus (P) stoichiometry to stand age and density in Pinus tabuliformis forest land can provide scientific evidence for sustainable management of Pinus tabuliformis plantations.

    Method 

    This study focused on Pinus tabuliformis plantations of three stand ages (30, 40 and 50 years) and three densities (1 000−1 500 tree/ha, 2 500−3 000 tree/ha, 4 000−4 500 tree/ha) in the Caijiachuan Watershed, western Shanxi Province of northern China. Soil C, N, and P contents and their stoichiometric ratios were measured and analyzed from 0 to 100 cm depth layer.

    Result 

    The two-factor interaction of stand age and density showed a significant influence on SOC, total N (TN), C∶N, C∶P, and N∶P (P < 0.05). (2) Stand age had different effects on soil TN, SOC, and chemical stoichiometric ratios in stands of different densities, plantations with high density exhibited soil fertility decline at 50 years. Older plantations indicate that lower stand density is associated with higher soil nutrient levels. (3) Soil TN was significantly positively correlated with TP, SOC, C∶P, and N∶P (P < 0.05); SOC was significantly positively correlated with C∶N, C∶P, and N∶P (P < 0.01). C and N elements had a significant impact on soil chemical stoichiometry and stand growth (P < 0.05).

    Conclusion 

    In loess area, it is necessary to rationally adjust stand density according to different Pinus tabuliformis stand ages. For a 30-year-old stand, the recommended density was 4 000 tree/ha. The density should be reduced to 2 500−3 000 tree/ha at 40 years. For a 50-year-old stand, the optimal density range for soil nutrients was 1 000−1 500 tree/ha. The appropriate stand density can ensure that the soil nutrient status of the forest land is maintained at an optimal level, which is beneficial for the current sustainable management of the artificial forest and the continuous function of subsequent soil conservation.

  • [1]
    胡亚伟, 施政乐, 刘畅, 等. 晋西黄土区刺槐林密度对林下植物多样性及土壤理化性质的影响[J]. 生态学杂志, 2023, 42(9): 2072−2080.

    Hu Y W, Shi Z L, Liu C, et al. Effects of stand densities on understory vegetation diversity and soil physicochemical properties of Robinia pseudoacacia forest in loess region of western Shanxi Province[J]. Chinese Journal of Ecology, 2023, 42(9): 2072−2080.
    [2]
    赵蔓, 张晓曼, 杨明洁. 林火干扰对栓皮栎–辽东栎混交林植物多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(10): 1732−1740.

    Zhao M, Zhang X M, Yang M J. Effects of forest fire disturbance on species diversity and soil physicochemical properties of Quercus variabilis and Quercus wutaishansea mixed forests[J]. Ecology and Environmental Sciences, 2023, 32(10): 1732−1740.
    [3]
    王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937−3947. doi: 10.3321/j.issn:1000-0933.2008.08.054

    Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937−3947. doi: 10.3321/j.issn:1000-0933.2008.08.054
    [4]
    Chen Q, Shi Z, Chen S, et al. Role of environment variables in spatial distribution of soil C, N, P ecological stoichiometry in the typical black soil region of Northeast China[J/OL]. Sustainability, 2022, 14(5): 2636[2022−02−24]. https://doi.org/10.3390/su14052636.
    [5]
    白丽丽, 王文颖, 德却拉姆, 等. 祁连山典型植被土壤碳、氮、磷含量及生态化学计量特征的垂直变化[J]. 干旱区研究, 2024, 41(3): 444−455.

    Bai L L, Wang W Y, Dequelamu, et al. Elevational variations in ecological soil C, N, and P stoichiometry among five typical vegetation types in the Qilian Mountains[J]. Arid Zone Research, 2024, 41(3): 444−455.
    [6]
    Sun R X, Ma L, Zhang S H, et al. Study on landscape patches influencing hillslope erosion processes and flow hydrodynamics in the Loess Plateau of western Shanxi Province, China[J/OL]. Water, 2020, 12(11): 3201[2024−11−16]. https://doi.org/10.3390/w12113201.
    [7]
    Li H, Wu Y, Liu S, et al. The Grain-for-Green Project offsets warming-induced soil organic carbon loss and increases soil carbon stock in Chinese Loess Plateau[J/OL]. The Science of the total environment, 2022, 837: 155469[2022−09−01]. https://doi.org/10.1016/j.scitotenv.2022.155469.
    [8]
    何如梦, 王百田, 于显威, 等. 晋西黄土区油松林的生长释放与生长抑制[J]. 应用与环境生物学报, 2018, 24(6): 1204−1210.

    He R M, Wang B T, Yu X W, et al. Growth release and growth inhibition of Pinus tabulaeformis forest in the Loess Plateau of western Shanxi Province, China[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(6): 1204−1210.
    [9]
    Li Y C, Li H P, Zhang W, et al. The effects of thinning on tree growth and stand biomass in a chrono sequence of Pinus tabulaeformis plantations in the Loess Plateau of China[J/OL]. Forests, 2023, 14: 1620[2023−08−11]. https://doi.org/10.3390/f14081620.
    [10]
    胡尔查, 王铮, 李梓豪, 等. 毛乌素沙地不同林龄樟子松人工林林下植物多样性和生物量的动态变化[J/OL]. 生态学杂志, 2024: 1−10[2024−08−02]. http://kns.cnki.net/kcms/detail/21.1148.Q.20240205.1812.010.html.

    Hu E C, Wang Z, Li Z H, et al. Dynamic changes of understory plant diversity and biomass of Pinus sylvestris var. mongolica plantations at different ages in Mu Us Sandy Land[J/OL]. Chinese Journal of Ecology, 2024: 1−10[2024−08−02]. http://kns.cnki.net/kcms/detail/21.1148.Q.20240205.1812.010.html.
    [11]
    赵丹阳, 毕华兴, 侯贵荣, 等. 不同林龄刺槐林植被与土壤养分变化特征[J]. 中国水土保持科学(中英文), 2021, 19(3): 56−63.

    Zhao D Y, Bi H X, Hou G R, et al. Evolution of vegetation and soil nutrients of artificial Robinia pseudoacacia forest[J]. Science of Soil and Water Conservation, 2021, 19(3): 56−63.
    [12]
    Li Q C, Liu Z L, Jin G Z. Impacts of stand density on tree crown structure and biomass: a global meta-analysis[J/OL]. Agricultural and Forest Meteorology, 2022, 326: 109181[2022−11−15]. https://doi.org/10.1016/j.agrformet.2022.109181.
    [13]
    刘超华, 李凤巧, 廖杨文科, 等. 人工林对土壤地力的影响过程及其调控研究进展[J]. 土壤学报, 2023, 60(3): 644−656.

    Liu C H, Li F Q, Liao-Yang W K, et al. Research progress on effects and regulation of plantation on soil fertility[J]. Acta Pedologica Sinica, 2023, 60(3): 644−656.
    [14]
    王宏生, 王玉琴, 宋梅玲, 等. 黄帚橐吾不同密度斑块植物、土壤和微生物碳氮磷生态化学计量特征[J]. 生态学报, 2024, 44(10): 4297−4307.

    Wang H S, Wang Y Q, Song M L, et al. Carbon, nitrogen and phosphorus stoichiometric characteristics of plants, soils and microbial biomass in patches with different densities of Ligularia virgaurea[J]. Acta Ecologica Sinica, 2024, 44(10): 4297−4307.
    [15]
    Mehrdad Z, Gaëlle V, Nathalie K, et al. The impact of stand composition and tree density on topsoil characteristics and soil microbial activities[J/OL]. Catena, 2024, 234: 107541[2023−09−25]. https://doi.org/10.1016/j.catena.2023.107541.
    [16]
    卫朝阳, 张建军, 赖宗锐, 等. 晋西黄土区油松人工林密度和立地对细根特征的影响[J]. 北京林业大学学报, 2024, 46(10): 22−32. doi: 10.12171/j.1000-1522.20230282

    Wei Z Y, Zhang J J, Lai Z R, et al. Influence of density and site on fine root characteristics of Pinus tabuliformis plantations in loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(10): 22−32. doi: 10.12171/j.1000-1522.20230282
    [17]
    王玉芬. 林分密度在营林生产中的应用[J]. 林业勘查设计, 2011(1): 59−63.

    Wang Y F. The applications of forest density in forest management[J]. Forest Investigation Design, 2011(1): 59−63.
    [18]
    Zhao M, Liu S H, Sun Y R, et al. Does stand density affect understory vegetation and soil properties of differently aged Robinia pseudoacacia plantations? [J/OL]. Forest Ecology and Management, 2023, 548: 121444[2023−11−15]. https://doi.org/10.1016/j.foreco.2023.121444.
    [19]
    朱金兆. 晋西黄土残塬沟壑区立地条件类型划分的研究[J]. 北京林学院学报, 1985, 6(4): 25−37.

    Zhu J Z. A study on the classification of land condition types in the Loess Plateau gully area of western Shanxi Province[J]. Journal of Beijing Forestry College, 1985, 6(4): 25−37.
    [20]
    成琳, 郭巧生, 朱再标, 等. “根际土–沙氏鹿茸草–寄主植物”连续体碳氮磷生态化学计量特征及耦合关系研究[J]. 生态学报, 2024, 44(18): 8326−8337.

    Cheng L, Guo Q S, Zhu Z B, et al. Ecological stoichiometric characteristics and the coupling relationship of carbon, nitrogen, and phosphorus in rhizosphere soil-Monochasma savatieri-the host continuum[J]. Acta Ecologica Sinica, 2024, 44(18): 8326−8337.
    [21]
    Zhao W, Huang L M. Changes in soil nutrients and stoichiometric ratios reveal increasing phosphorus deficiency along a tropical soil chrono sequence[J/OL]. Catena, 2023, 222: 106893[2022−12−31]. https://doi.org/10.1016/j.catena.2022.106893.
    [22]
    巩大鹏, 毕华兴, 王劲峰, 等. 晋西黄土区不同密度刺槐人工林叶片–枯落物–土壤化学计量特征[J]. 林业科学研究, 2024, 37(2): 156−164.

    Gong D P, Bi H X, Wang J F, et al. Stoichiometric characteristics of leaves-litter-soil of Robinia pseudoacacia of different densities in the loess region of western Shanxi Province[J]. Forest Research, 2024, 37(2): 156−164.
    [23]
    朱燕, 翟博超, 孙美美, 等. 黄土丘陵区不同密度刺槐和油松人工林土壤理化性质与化学计量特征[J]. 水土保持研究, 2023, 30(6): 160−167.

    Zhu Y, Zhai B C, Sun M M, et al. Soil physicochemical properties and stoichiometry characteristics in Robinia pseudoacacia and Pinus tabuliformis plantations across different densities in the loess hilly region[J]. Research of Soil and Water Conservation, 2023, 30(6): 160−167.
    [24]
    加沙来提·阿塔吾拉, 鲁艳, 张波, 等. 塔里木盆地南缘绿洲–沙漠过渡带8种植物C、N、P生态化学计量特征的季节变化[J]. 生态学报, 2024, 44(19): 8605−8616.

    Jiashalaiti A, Lu Y, Zhang B, et al. Seasonal variation of C, N, and P ecological stoichiometric characteristics of 8 plant species in the oasis-desert transitional zone on the southern margin of the Tarim Basin[J]. Acta Ecologica Sinica, 2024, 44(19): 8605−8616.
    [25]
    李雪, 王静, 张静, 等. 林龄和林分密度对华北落叶松人工林土壤养分和细菌群落的影响[J]. 中南林业科技大学学报, 2022, 42(10): 83−92.

    Li X, Wang J, Zhang J, et al. Effects of stand age and stand density on the soil nutrient and bacterial community of Larix principis-rupprechtii plantation[J]. Journal of Central South University of Forestry & Technology, 2022, 42(10): 83−92.
    [26]
    席丽, 李思瑶, 夏晓莹, 等. 海拔、林龄和郁闭度对天山云杉林土壤肥力的影响[J]. 生态学杂志, 2023, 42(10): 2477−2485.

    Xi L, Li S Y, Xia X Y, et al. Effects of altitude, stand age, and canopy density on soil fertility in Picea schrenkiana forest[J]. Chinese Journal of Ecology, 2023, 42(10): 2477−2485.
    [27]
    尹明宇, 吴波, 乌云塔娜, 等. 初植密度对科尔沁沙地樟子松人工林生长和健康状况及土壤化学性质的影响[J]. 西北农林科技大学学报(自然科学版), 2024, 52(7): 42−52.

    Yin M Y, Wu B, Wuyun T N, et al. Effects of initial planting density on growth, health status and soil chemical properties of Pinus sylvestris var. mongolica plantations in Horqin Sandy Land[J]. Journal of Northwest A&F University, 2024, 52(7): 42−52.
    [28]
    Chen Y, Li Y, Duan Y, et al. Patterns and driving factors of soil ecological stoichiometry in typical ecologically fragile areas of China[J/OL]. Catena, 2022, 219: 106628[2024−09−15]. https://doi.org/10.1016/j.catena.2022.106628.
    [29]
    武燕, 黄青, 刘讯, 等. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99−107.

    Wu Y, Huang Q, Liu X, et al. Effects of Pinus massoniana plantation age on soil physical and chemical properties in southwest karst area[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 48(3): 99−107.
    [30]
    芦东旭, 耿雪琪, 崔子怡, 等. 黄土丘陵区不同林龄刺槐养分利用特征和林分质量研究[J]. 北京林业大学学报, 2023, 45(12): 90−99. doi: 10.12171/j.1000-1522.20230058

    Lu D X, Geng X Q, Cui Z Y, et al. Nutrient utilization characteristics and stand quality of Robinia pseudoacacia at different stand ages in the loess hilly region of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(12): 90−99. doi: 10.12171/j.1000-1522.20230058
    [31]
    刘少华, 赵敏, 王亚娟, 等. 黄土丘陵区林分密度对人工刺槐林土壤理化性质及酶活性影响[J]. 水土保持研究, 2024, 31(5): 123−129, 138.

    Liu S H, Zhao M, Wang Y J, et al. Effects of stand density on soil physicochemical properties and enzyme activities in Robinia pseudoacacia plantations in the loess hilly-gully region[J]. Research of Soil and Water Conservation, 2024, 31(5): 123−129, 138.
    [32]
    张晓曦, 胡嘉伟, 刘凯旋, 等. 黄土丘陵区刺槐人工林林龄增加过程中土壤微环境变化对凋落物分解的影响[J]. 生态学报, 2024, 44(7): 2931−2945.

    Zhang X X, Hu J W, Liu K X, et al. Effects of the alterations in soil micro-environment with increasing stand age of Robinia pseudocacia plantation on the litter decomposition in the loess hilly region[J]. Acta Ecologica Sinica, 2024, 44(7): 2931−2945.
    [33]
    马雅莉, 高荣, 刘喜东, 等. 白于山区不同植物群落土壤碳氮磷空间分布及化学计量特征[J]. 中南林业科技大学学报, 2023, 43(9): 116−125.

    Ma Y L, Gao R, Liu X D, et al. Spatial distribution and stoichiometric characteristics of soil carbon, nitrogen and phosphorus in different plant communities in Baiyu Mountain areas[J]. Journal of Central South University of Forestry & Technology, 2023, 43(9): 116−125.
    [34]
    胡亚伟, 孙若修, 申明爽, 等. 晋西黄土区土地利用方式对土壤C∶N∶P化学计量特征及土壤理化性质的影响[J]. 干旱区研究, 2021, 38(4): 990−999.

    Hu Y W, Sun R X, Shen M S, et al. Effects of land use types on the stoichiometric characteristics of soil C∶N∶P and the physical and chemical properties of soil in western Shanxi loess region[J]. Chinese Journal of Ecology, 2021, 38(4): 990−999.
    [35]
    詹紫馨, 冯天骄, 梅柏寒, 等. 晋西黄土区典型植被恢复生态系统各层次化学计量与生态因子的关系[J]. 浙江农林大学学报, 2024, 41(4): 797−809. doi: 10.11833/j.issn.2095-0756.20230448

    Zhan Z X, Feng T J, Mei B H, et al. Relationship between stoichiometry and ecological factors at various levels of typical vegetation restoration ecosystem in the loess area of western Shanxi Province[J]. Journal of Zhejiang A & F University, 2024, 41(4): 797−809. doi: 10.11833/j.issn.2095-0756.20230448
    [36]
    Ma Y H, Chen H, Liu D, et al. Identification and management of priority regulation areas based on the supply-demand relationship of ecosystem services: a case study of the Loess Plateau[J]. Ecological Indicators, 2024, 159: 111754[2024−02−15]. https://doi.org/10.1016/j.ecolind.2024.111754.
    [37]
    Liu T R, Peng D L, Tan Z J, et al. Do stand density and month regulate soil enzymes and the stoichiometry of differently aged Larix principis-rupprechtii plantations? [J/OL]. Catena, 2023, 220: 106683[2024−10−21]. https://doi.org/10.1016/j.catena.2022.106683.
    [38]
    罗也, 王君, 杨雨春, 等. 东北胡桃楸次生林生长随林龄和林分密度的变化规律[J]. 北京林业大学学报, 2024, 46(6): 10−19. doi: 10.12171/j.1000-1522.20230171

    Luo Y, Wang J, Yang Y C, et al. Growth patterns of Juglans mandshurica secondary forest with stand age and stand density in Northeast China[J]. Journal of Beijing Forestry University, 2024, 46(6): 10−19. doi: 10.12171/j.1000-1522.20230171
    [39]
    张煜林, 刘玲娟, 刘胜龙, 等. 不同密度杉木萌生林自然恢复初期群落结构对生态系统碳密度的影响[J]. 应用生态学报, 2024, 35(2): 289−297.

    Zhang Y L, Liu L J, Liu S L, et al. Effects of community structure of Cunninghamia lanceolata sprouting forests with different densities on ecosystem carbon density at the early stage of succession[J]. Chinese Journal of Applied Eeology, 2024, 35(2): 289−297.
    [40]
    Chen B M, Liu S S, Yu J H, et al. Stand biomass of Pinus sylvestris var. mongolica plantations benefits from high density monocultures in the boreal zone[J/OL]. Forest Ecosystems, 2024, 11: 100222[2024−07−08]. https://doi.org/10.1016/j.fecs.2024.100222.
    [41]
    罗也, 何怀江, 张忠辉, 等. 张广才岭不同林分密度下物种组成及其多样性[J]. 中南林业科技大学学报, 2023, 43(11): 131−141.

    Luo Y, He H J, Zhang Z H, et al. Species composition and diversity under different stand densities in Zhangguangcailing[J]. Journal of Central South University of Forestry & Technology, 2023, 43(11): 131−141.
    [42]
    何普林, 徐其贤, 王忠林, 等. 林龄和土层对柠檬桉林土壤养分和易氧化有机碳的影响[J]. 林业科学研究, 2024, 37(2): 115−123.

    He P L, Xu Q X, Wang Z L, et al. Effects of stand age and soil layer on soil nutrients and readily oxidizable organic carbon concentrations of Eucalyptus citriodora plantations[J]. Forest Research, 2024, 37(2): 115−123.
    [43]
    杨桂娟, 胡海帆, 孙洪刚, 等. 林分年龄、造林密度和林分自然稀疏对杉木人工林个体大小分化和生产力关系的影响[J]. 林业科学, 2019, 55(11): 126−136. doi: 10.11707/j.1001-7488.20191114

    Yang G J, Hu H F, Sun H G, et al. The influences of stand age, planting density and self-thinning on relationship between size inequality and periodic annual increment in Chinese fir (Cunninghamia lanceolata) plantations[J]. Scientia Silvae Sinicae, 2019, 55(11): 126−136. doi: 10.11707/j.1001-7488.20191114

Catalog

    Article views (164) PDF downloads (56) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return