Advanced search
    Wei Rongjun, Wang Zhichuang, Wang Xuechun, Wang Tinghuan, Wang Zhenyu, He Zhengbin, Yi Songlin. Preparation of energy storage wood with metallic shell by Sn-Bi alloy/myristic acid[J]. Journal of Beijing Forestry University, 2024, 46(8): 25-33. DOI: 10.12171/j.1000-1522.20240084
    Citation: Wei Rongjun, Wang Zhichuang, Wang Xuechun, Wang Tinghuan, Wang Zhenyu, He Zhengbin, Yi Songlin. Preparation of energy storage wood with metallic shell by Sn-Bi alloy/myristic acid[J]. Journal of Beijing Forestry University, 2024, 46(8): 25-33. DOI: 10.12171/j.1000-1522.20240084

    Preparation of energy storage wood with metallic shell by Sn-Bi alloy/myristic acid

    More Information
    • Received Date: March 19, 2024
    • Revised Date: June 03, 2024
    • Accepted Date: June 04, 2024
    • Available Online: June 06, 2024
    • Objective 

      In order to solve the problems of liquid leakage and poor thermal conductivity faced by wood-based phase change energy storage materials, we heat-treated myristic acid impregnated wood using Sn-Bi alloy, and introduced it into the wood under the drive of heat.

      Method 

      Taking poplar wood impregnated with myristic acid as matrix, Sn-Bi alloy was combined with the matrix by alternating high and low temperature heat treatments to prepare energy storage wood with metal shells. Scanning electron microscope, Shore hardness tester, universal mechanics tester, thermal conductivity meter and differential scanning calorimeter were used to test the micro-morphology, surface hardness, compressive strength parallel to grain and thermal properties of the energy storage wood.

      Result 

      The mass gain of samples during heat treatment at 160−220 ℃ for 1−5 min was significant. The mechanical and thermal properties of samples were improved with the increase of heat treatment temperature and time. Compared with untreated wood, the compressive strength parallel to grain and surface hardness were increased by 120.02%−149.59% and 13.53%−46.93%, respectively, and the axial and radial thermal conductivity were increased by 34.18%−165.67% and 38.11%−80.70%, respectively. The Sn-Bi alloy was filled best when heat-treated at 190 ℃ for 5 min, with surface hardness, axial and radial thermal conductivity reaching the highest values of 62.65 HD, 0.5324 and 0.2987 W/(m·K). Retention of myristic acid within the wood ranged from 27.54% to 63.68%, and the highest energy storage density of 59.38 J/cm3 was achieved after heat treating at 160 ℃ for 3 min.

      Conclusion 

      Alternating high and low temperature heat treatment prompts the Sn-Bi alloy entering into the vessel of the wood, achieving different degrees of penetration. Three dimensional pore structures of wood and Sn-Bi alloy filled outside solves the problems of liquid leakage and poor thermal conductivity of phase change materials. The prepared energy storage wood combines the advantages of wood, metal and phase change materials, with better surface hardness, compressive strength parallel to grain and thermal properties, making it prospective for applications in building walls and energy-storage floors.

    • [1]
      Wang X N, Li W G, Luo Z Y, et al. A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application[J]. Energy and Buildings, 2022, 260: 111923. doi: 10.1016/j.enbuild.2022.111923
      [2]
      王琰, 彭尧, 曹金珍. 木基相变蓄热材料研究进展[J]. 世界林业研究, 2021, 34(6): 45−49.

      Wang Y, Peng Y, Cao J Z. Research progress in wood-based phase change materials for thermal storage[J]. World Forestry Research, 2021, 34(6): 45−49.
      [3]
      杨磊, 姚远, 张冬冬, 等. 有机相变储能材料的研究进展[J]. 新能源进展, 2019, 7(5): 464−472. doi: 10.3969/j.issn.2095-560X.2019.05.011

      Yang L, Yao Y, Zhang D D, et al. Progress of organic phase change energy storage materials[J]. Advances in New and Renewable Energy, 2019, 7(5): 464−472. doi: 10.3969/j.issn.2095-560X.2019.05.011
      [4]
      Umair M M, Zhang Y, Iqbal K, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage: a review[J]. Applied Energy, 2019, 235: 846−873. doi: 10.1016/j.apenergy.2018.11.017
      [5]
      何林韩, 凌凯莉, 任瑞清, 等. 以Cu颗粒强化导热的木质基复合相变储热材料性能研究[J]. 北京林业大学学报, 2022, 44(12): 132−141. doi: 10.12171/j.1000-1522.20220228

      He L H, Ling K L, Ren R Q, et al. Properties of wood-based composite phase change heat storage materials with Cu particles to enhance heat conduction[J]. Joumal of Beijing Forestry University, 2022, 44(12): 132−141. doi: 10.12171/j.1000-1522.20220228
      [6]
      Sulaiman N S, Amini M H M. Review on the phase change materials in wood for thermal regulative wood-based products[J]. Forests, 2022, 13(10): 1622.
      [7]
      Wen R L, Liu Y F, Yang C, et al. Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings[J]. Journal of Energy Storage, 2021, 36: 102420. doi: 10.1016/j.est.2021.102420
      [8]
      Sun J M, Zhao J Q, Wang B B, et al. Biodegradable wood plastic composites with phase change microcapsules of honeycomb-BN-layer for photothermal energy conversion and storage[J]. Chemical Engineering Journal, 2022, 448: 137218. doi: 10.1016/j.cej.2022.137218
      [9]
      朱祥宁, 冯黛丽, 冯妍卉, 等. 木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化[J]. 物理学报, 2023, 72(8): 326−335.

      Zhu X N, Feng D L, Feng Y H, et al. Enhanced heat storage and heat transfer performance of wood-based biomass carbonized skeleton loaded with polyethylene glycol phase change material by surface modification[J]. Acta Physica Sinica, 2023, 72(8): 326−335.
      [10]
      Shi X T, Meng Y, Bi R, et al. Enabling unidirectional thermal conduction of wood-supported phase change material for photo-to-thermal energy conversion and heat regulation[J]. Composites Part B: Engineering, 2022, 245: 110231. doi: 10.1016/j.compositesb.2022.110231
      [11]
      Ma L Y, Wang Q W, Li L P. Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage[J]. Solar Energy Materials and Solar Cells, 2019, 194: 215−221. doi: 10.1016/j.solmat.2019.02.026
      [12]
      Yang H Y, Chao W X, Di X, et al. Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage[J]. Energy Conversion and Management, 2019, 200: 112029. doi: 10.1016/j.enconman.2019.112029
      [13]
      Xu C L, Zhang H, Fang G Y. Review on thermal conductivity improvement of phase change materials with enhanced additives for thermal energy storage[J]. Journal of Energy Storage, 2022, 51: 104568. doi: 10.1016/j.est.2022.104568
      [14]
      柴媛, 陶鑫, 梁善庆, 等. 填缝型微波膨化木基金属复合材料制备及其性能表征[J]. 北京林业大学学报, 2021, 43(10): 118−125. doi: 10.12171/j.1000-1522.20210209

      Chai Y, Tao X, Liang S Q, et al. Preparation and property characterization of crack-filled type microwave puffed wood based metal composites[J]. Journal of Beijing Forestry University, 2021, 43(10): 118−125. doi: 10.12171/j.1000-1522.20210209
      [15]
      Wan J Y, Song J W, Yang Z, et al. Highly anisotropic conductors[J]. Advanced Materials, 2017, 29(41): 1703331. doi: 10.1002/adma.201703331
      [16]
      Chai Y, Liang S Q, Zhou Y D, et al. Low-melting-point alloy integration into puffed wood for improving mechanical and thermal properties of wood–metal functional composites[J]. Wood Science and Technology, 2020, 54(3): 637−649. doi: 10.1007/s00226-020-01174-5
      [17]
      Wang Z L, Bao Y P, Wang M, et al. Highly anisotropic metallized wood obtained by filling basswood channels with low-melting-point Sn-Bi alloy[J]. Industrial Crops and Products, 2022, 189: 115864. doi: 10.1016/j.indcrop.2022.115864
      [18]
      柴媛, 傅峰, 梁善庆. 木基金属功能复合材料研究进展[J]. 北京林业大学学报, 2019, 41(3): 151−160.

      Chai Y, Fu F, Liang S Q. Progress of wood based metal functional composites[J]. Journal of Beijing Forestry University, 2019, 41(3): 151−160.
      [19]
      Zhao X Y, He L X, Zhang T F, et al. Development of metallic wood with enhanced physical, mechanical, and thermal conduction properties based on a self-driven penetration mechanism[J]. Industrial Crops and Products, 2022, 183: 114960. doi: 10.1016/j.indcrop.2022.114960
      [20]
      Liu S, Wu H, Du Y, et al. Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111187. doi: 10.1016/j.solmat.2021.111187
      [21]
      Borůvka V, Zeidler A, Holeček T, et al. Elastic and strength properties of heat-treated beech and birch wood[J]. Forests, 2018, 9(4): 197.
      [22]
      蒋军, 杜静静, 徐信武, 等. 热处理木材性能改良与工艺优化研究进展[J]. 复合材料学报, 2024, 41(4): 1712−1725.

      Jiang J, Du J J, Xu X W, et al. Research progress on performance improvement and process optimization of thermally treated wood[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1712−1725.
      [23]
      刘世培, 刘文静, 王斌, 等. 热处理木材细胞壁空隙结构与导热系数的研究[J]. 林业科技, 2022, 47(4): 29−33.

      Liu S P, Liu W J, Wang B, et al. The cell wall pore structure and thermal conductivity of heat-treated wood[J]. Forestry Science & Technology, 2022, 47(4): 29−33.
      [24]
      Yuan Y P, Zhang N, Tao W Q, et al. Fatty acids as phase change materials: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 482−498. doi: 10.1016/j.rser.2013.08.107
      [25]
      Li X Q, Wei H T, Lin X S, et al. Preparation of stearic acid/modified expanded vermiculite composite phase change material with simultaneously enhanced thermal conductivity and latent heat[J]. Solar Energy Materials and Solar Cells, 2016, 155: 9−13. doi: 10.1016/j.solmat.2016.04.057
      [26]
      柴媛, 陶鑫, 梁善庆, 等. 锡铋合金/微波膨化木复合材料表面温度变化规律及影响因素[J]. 林业工程学报, 2022, 7(2): 52−58.

      Chai Y, Tao X, Liang S Q, et al. Change law of surface temperature and influencing factors on Sn-Bi alloy/microwave puffed wood composites[J]. Journal of Forestry Engineering, 2022, 7(2): 52−58.
      [27]
      董金美, 刘启元, 吴芳, 等. 脂肪酸类二元储能材料的相变特性与配比调节[J]. 储能科学与技术, 2023, 12(2): 349−356.

      Dong J M, Liu Q Y, Wu F, et al. Phase change characteristics and proportion adjustment of fatty acid binary energy storage materials[J]. Energy Storage Science and Technology, 2023, 12(2): 349−356.
      [28]
      王永福, 周荣琪, 段占庭. 脂肪酸分离研究进展[J]. 中国油脂, 2001(5): 78−80. doi: 10.3321/j.issn:1003-7969.2001.05.023

      Wang Y F, Zhou R Q, Duan Z T. Recent development of research on separation of fatty acids[J]. China Oils and Fats, 2001(5): 78−80. doi: 10.3321/j.issn:1003-7969.2001.05.023
    • Related Articles

      [1]Zhou Kerou, Chen Zhuo, Yu Zhucheng, Zhong Yang, Shang Ce. Population structure and genetic diversity of Bretschneidera sinensis in Xianxialing Nature Reserve, Zhejiang Province of eastern China[J]. Journal of Beijing Forestry University, 2024, 46(11): 76-82. DOI: 10.12171/j.1000-1522.20230211
      [2]Gao Hongzhi, Huang Xin, Su Hao, Qiao Pengfei, Jiang Zaimin, Shen Yaorong, Cai Jing. Structure and dynamic characteristics of Betula albo-sinensis populations in two regions in the Qinling Mountains of northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(9): 12-20. DOI: 10.12171/j.1000-1522.20210003
      [3]Chen Cun, Ding Changjun, Huang Qinjun, Zhang Jing, Liu Ning, Li Bo, Li Zhenghong, Su Xiaohua. Phenotypic and physiological trait diversity and population structure of Populus deltoides[J]. Journal of Beijing Forestry University, 2021, 43(6): 1-12. DOI: 10.12171/j.1000-1522.20200231
      [4]Wu Xiuping, Xu Xiaogang, Wang Lu, Li Yao. Population structure and spatial distribution point patterns of Tsuga chinensis var. tchekiangensis in Wuyishan Mountain, Jiangxi of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 60-68. DOI: 10.13332/j.1000-1522.20180309
      [5]QIU Er-fa, XU Fei, WANG Cheng, DONG Jian-wen, WU Yong-shu, . Population distribution and structure characteristics of village roadside forest in Fujian Province, eastern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 68-74.
      [6]LIU Pu-xing, LU Chen-yu, YAO Xiao-jun, CAO Li-guo. Structure and spatial distribution patterns of Populus euphratica populations from different habitats in the Dunhuang Oasis[J]. Journal of Beijing Forestry University, 2011, 33(2): 48-52.
      [7]ZHAO Li-qiong, HUANG Hua-guo, LIANG Da-shuang, ZHANG Xiao-li.. Spatial distribution pattern of Picea crassifolia population in Dayekou, Gansu Province[J]. Journal of Beijing Forestry University, 2010, 32(4): 59-64.
      [8]SHI Yu, YU Xin-xiao, YUE Yong-jie, ZHANG Zhen-ming, GAN Jing, WANG Xiao-ping, LI Jin-hai. Pattern analysis of different populations in natural secondary forest of Betula davurica in mountainous area of Beijing.[J]. Journal of Beijing Forestry University, 2009, 31(5): 35-41.
      [9]MA Qin-yan. Analysis of the negative binomial distribution and test of population pattern.[J]. Journal of Beijing Forestry University, 2009, 31(3): 1-5.
      [10]NIU Li-li, YU Xin-xiao, LIU Shu-yan, LIU Yan, YUE Yong-jie, WANG Xiao-ping, CHEN Jun-qi. Life history characteristics and spatial distribution of Pinus tabulaeformis population in Songshan Nature Reserve of Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 17-21.
    • Cited by

      Periodical cited type(7)

      1. 王为,雷俊杰,简佶沛,王利宝. 基于云平台智能灌溉控制系统的油茶苗水分管理研究. 现代农业科技. 2023(20): 110-113+121 .
      2. 董诗芬,王自洪,李丽华,李看清. 不同覆盖措施对初植腾冲红花油茶生长的影响研究. 林业调查规划. 2022(03): 118-121+142 .
      3. 谢胤,余祖华,尹必期,王自洪,寸明辉,徐志映,吴兴波,杨忠品. 腾冲红花油茶主要营养器官含水率年内变化分析. 林业与环境科学. 2021(01): 25-28 .
      4. 胡玉玲,蔡芳丽,卢海燕,罗海秀,贺姣凤. 油茶林地夏季水分管理对油茶产量指标的影响. 江苏林业科技. 2018(03): 23-27+45 .
      5. 刘嘉翔,赵丹,杨建伟,史宝胜. 不同土壤水分条件下北京山梅花生长与耗水特性研究. 河北农业大学学报. 2018(05): 84-89 .
      6. 何小三,徐林初,龚春,王玉娟,刘新亮,赵攀,左继林,俞元春. 干旱胁迫对‘赣无12’苗期光合特性的影响. 中南林业科技大学学报. 2018(12): 52-61 .
      7. 樊星火,樊文勇,黄辉,施重阳,郑永红. 夏季不同灌溉方式对油茶叶片生理指标和花期的影响. 林业科技通讯. 2017(12): 12-14 .

      Other cited types(4)

    Catalog

      Article views (308) PDF downloads (34) Cited by(11)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return