Advanced search
    Yan Jiahui, Zhou Chengcheng, Niu Shihui, Li Wei. Identification of SAUR gene family in Pinus tabuliformis and analysis on its expression patterns under drought stress[J]. Journal of Beijing Forestry University, 2024, 46(8): 57-67. DOI: 10.12171/j.1000-1522.20230333
    Citation: Yan Jiahui, Zhou Chengcheng, Niu Shihui, Li Wei. Identification of SAUR gene family in Pinus tabuliformis and analysis on its expression patterns under drought stress[J]. Journal of Beijing Forestry University, 2024, 46(8): 57-67. DOI: 10.12171/j.1000-1522.20230333

    Identification of SAUR gene family in Pinus tabuliformis and analysis on its expression patterns under drought stress

    More Information
    • Received Date: November 17, 2023
    • Revised Date: January 03, 2024
    • Accepted Date: June 20, 2024
    • Available Online: June 26, 2024
    • Objective 

      This paper aims to identify the small auxin-up RNA (SAUR) family of auxin-responsive genes in Pinus tabuliformis, analyze its basic characteristics and role in drought stress, in order to provide a reference for the functional analysis of SAUR gene family in P. tabuliformis and other conifers.

      Method 

      Based on the whole genome data of P. tabuliformis, the SAUR gene family was identified by blast comparison. The gene structure, amino acid characteristics, chromosome localization, gene evolution, and gene function were analyzed using bioinformatics methods, and the expression patterns under drought stress were analyzed using RNA-Seq data. [Result] (1) A total of 66 SAUR family genes were identified in P. tabuliformis, named PtSAUR1−PtSAUR66. Among them, 60 SAUR family members were unevenly distributed on 9 chromosomes, mostly clustered. (2) The analysis of protein physicochemical characteristics showed that 76% of SAUR proteins were alkaline, and the subcellular prediction results showed that 74% of SAUR proteins can be localized in the nucleus. (3) The collinear relationship of SAUR genes of P. tabuliformis with Ginkgo biloba and Sequoiadendron giganteum showed that, compared with G. biloba, the homologous relationship between P. tabuliformis and S. giganteum was closer. (4) The prediction results of cis-acting elements showed that multiple hormones (methyl jasmonate, abscisic acid, auxin, etc.) and non-biological stress (low temperature, drought, etc.) related cis-acting elements were predicted in the promoters of the SAUR family genes. Among them, the number of elements related to methyl jasmonate was the highest, while the number of elements related to auxin was the lowest. (5) Systematic evolutionary analysis showed that the SAUR family proteins of P. tabuliformis can be divided into 7 groups. There were both SAUR proteins in P. tabuliformis, which was similar to angiosperms, as well as SAUR proteins unique to P. tabuliformis, which was previously isolated. (6) The RNA-Seq data analysis results showed that P. tabuliformis SAUR gene family had a certain regulatory effect on drought stress, with significant changes in the members of PtSAUR23, PtSAUR59, and PtSAUR66 genes, suggesting that they were key genes for drought resistance.

      Conclusion 

      The SAUR family genes of P. tabuliformis can participate in regulating drought stress, among which PtSAUR23, PtSAUR59, and PtSAUR66 may play a key role in this process.

    • [1]
      Li X, Liu G, Geng Y, et al. A genome-wide analysis of the small auxin-up RNA (SAUR) gene family in cotton[J]. BMC Genomics, 2017, 18(1): 815. doi: 10.1186/s12864-017-4224-2
      [2]
      Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors[J]. Plant Molecular Biology, 2002, 49(3): 373−385.
      [3]
      李亚男, 冯霞, 陈大清. ARF、Aux/IAA和生长素受体对基因表达的调控[J]. 安徽农学通报, 2008, 14(7): 36−39. doi: 10.3969/j.issn.1007-7731.2008.07.013

      Li Y N, Feng X, Chen D Q. Regulation of ARF, Aux/IAA and auxin receptor for gene expression[J]. Anhui Agricultural Science Bulletin, 2008, 14(7): 36−39. doi: 10.3969/j.issn.1007-7731.2008.07.013
      [4]
      van Mourik H, van Dijk A D J, Stortenbeker N, et al. Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade[J]. BMC Plant Biology, 2017, 17(1): 245. doi: 10.1186/s12870-017-1210-4
      [5]
      Guo Y, Jiang Q, Hu Z, et al. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress[J]. The Crop Journal, 2018, 6(2): 181−190. doi: 10.1016/j.cj.2017.08.005
      [6]
      Kong Y, Zhu Y, Gao C, et al. Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis[J]. Plant and Cell Physiology, 2013, 54(4): 609−621. doi: 10.1093/pcp/pct028
      [7]
      Wong J H, Spartz A K, Park M Y, et al. Mutation of a conserved motif of PP2C. D phosphatases confers SAUR immunity and constitutive activity[J]. Plant Physiology, 2019, 181(1): 353−366. doi: 10.1104/pp.19.00496
      [8]
      Zhang H, Yu Z, Yao X, et al. Genome-wide identification and characterization of small auxin-up RNA (SAUR) gene family in plants: evolution and expression profiles during normal growth and stress response[J]. BMC Plant Biology, 2021, 21(1): 4. doi: 10.1186/s12870-020-02781-x
      [9]
      周丽霞, 杨蒙迪, 曹红星, 等. 油棕SAUR基因家族的全基因组鉴定及生物信息学分析[J]. 南方农业学报, 2022, 53(4): 1011−1020. doi: 10.3969/j.issn.2095-1191.2022.04.014

      Zhou L X, Yang M D, Cao H X, et al. Genome-wide identification and bioinformatics analysis of the oil palm SAUR gene family[J]. Journal of Southern Agriculture, 2022, 53(4): 1011−1020. doi: 10.3969/j.issn.2095-1191.2022.04.014
      [10]
      Jain M, Tyagi A K, Khurana J P. Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa)[J]. Genomics, 2006, 88(3): 360−371. doi: 10.1016/j.ygeno.2006.04.008
      [11]
      李傲, 崔梦杰, 陈珂, 等. 葡萄SAUR基因家族鉴定与生物信息学分析[J]. 植物遗传资源学报, 2018, 19(2): 326−337.

      Li A, Cui M J, Chen K, et al. Identification and bioinformatics analysis of the SAUR gene family in grape[J]. Journal of Plant Genetic Resources, 2018, 19(2): 326−337.
      [12]
      Zhang N, Huang X, Bao Y, et al. Genome-wide identification of SAUR genes in watermelon (Citrullus lanatus)[J]. Physiology and Molecular Biology of Plants, 2017, 23(3): 619−628. doi: 10.1007/s12298-017-0442-y
      [13]
      Ren H, Gray W M. SAUR proteins as effectors of hormonal and environmental signals in plant growth[J]. Molecular Plant, 2015, 8(8): 1153−1164. doi: 10.1016/j.molp.2015.05.003
      [14]
      Hu W, Yan H, Luo S, et al. Genome-wide analysis of poplar SAUR gene family and expression profiles under cold, polyethylene glycol and indole-3-acetic acid treatments[J]. Plant Physiology and Biochemistry, 2018, 128: 50−65. doi: 10.1016/j.plaphy.2018.04.021
      [15]
      Stortenbeker N, Bemer M. The SAUR gene family: the plant’s toolbox for adaptation of growth and development[J]. Journal of Experimental Botany, 2019, 70(1): 17−27. doi: 10.1093/jxb/ery332
      [16]
      Chae K, Isaacs C G, Reeves P H, et al. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation[J]. The Plant Journal, 2012, 71(4): 684−697. doi: 10.1111/j.1365-313X.2012.05024.x
      [17]
      Tian Z, Han J, Che G, et al. Genome-wide characterization and expression analysis of SAUR gene family in melon (Cucumis melo L.)[J]. Planta, 2022, 255(6): 123. doi: 10.1007/s00425-022-03908-0
      [18]
      Hu J, Yu Q, Jiang S, et al. Identification and expression analysis of the small auxin-up RNA (SAUR) gene family in Lycium ruthenicum[J]. Peer Journal, 2023, 11: e15941.
      [19]
      刘昊东, 于亚新, 冯岗, 等. 小麦SAUR基因家族的鉴定及表达分析[J]. 分子植物育种, 2022, 20(14): 4525−4538.

      Liu H D, Yu Y X, Feng G, et al. Identification and expression analysis of the SAUR gene family in Triticum aestivum L.[J]. Molecular Plant Breeding, 2022, 20(14): 4525−4538.
      [20]
      Rodríguez S M, Ordás R J, Alvarez J M. Conifer biotechnology: an overview[J]. Forests, 2022, 13(7): 1061.
      [21]
      张晶星, 马彦广, 王辉丽, 等. 油松JAZ基因家族特征及其与DELLA蛋白互作的功能域鉴定[J]. 北京林业大学学报, 2022, 44(12): 12−22. doi: 10.12171/j.1000-1522.20220027

      Zhang J X, Ma Y G, Wang H L, et al. Characteristic of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein[J]. Journal of Beijing Forestry University, 2022, 44(12): 12−22. doi: 10.12171/j.1000-1522.20220027
      [22]
      Li J, Han F, Yuan T, et al. The methylation landscape of giga-genome and the epigenetic timer of age in Chinese pine[J]. Nature Communications, 2023, 14(1): 1947.
      [23]
      Pervaiz T, Liu S W, Uddin S, et al. The transcriptional landscape and hub genes associated with physiological responses to drought stress in Pinus tabuliformis[J]. International Journal of Molecular Sciences, 2021, 22(17): 9604. doi: 10.3390/ijms22179604
      [24]
      Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
      [25]
      Scott A D, Zimin A V, Puiu D, et al. A reference genome sequence for giant sequoia[J]. G3: Genes, Genomes, Genetics, 2020, 10(11): 3907−3919.
      [26]
      Zhao Y P, Fan G, Yin P P, et al. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil[J]. Nature Communications, 2019, 10(1): 4201. doi: 10.1038/s41467-019-12133-5
      [27]
      Wang Y, Tang H, DeBarry J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49−e49. doi: 10.1093/nar/gkr1293
      [28]
      Niu S, Li J, Bo W, et al. The Chinese pine genome and methylome unveil key features of conifer evolution[J]. Cell, 2022, 185(1): 204−217.
      [29]
      Du Y L, Zhang Q, Li W J, et al. Genome- and transcriptome-wide identification and analysis of B3 superfamily members and their association with salt stress response in the common bean (Phaseolus vulgaris L.)[J]. Scientia Horticulturae, 2022, 305: 111408. doi: 10.1016/j.scienta.2022.111408
      [30]
      王福生, 余洪, 胡洲, 等. 柑橘属SAUR基因家族的全基因组鉴定及表达分析[J]. 园艺学报, 2020, 47(1): 23−40.

      Wang F S, Yu H, Hu Z, et al. Genome-wide analysis of SAUR gene family in Citrus[J]. Acta Horticulturae Sinica, 2020, 47(1): 23−40.
      [31]
      Sun N, Wang J, Gao Z, et al. Arabidopsis SAURs are critical for differential light regulation of the development of various organs[J]. Proceedings of the National Academy of Sciences, 2016, 113(21): 6071−6076. doi: 10.1073/pnas.1604782113
      [32]
      de la Torre A R, Piot A, Liu B, et al. Functional and morphological evolution in gymnosperms: a portrait of implicated gene families[J]. Evolutionary Applications, 2020, 13(1): 210−227. doi: 10.1111/eva.12839
      [33]
      王红飞, 尚庆茂. 黄瓜SAUR基因家族的鉴定与表达分析[J]. 园艺学报, 2019, 46(6): 1093−1111.

      Wang H F, Shang Q M. Genome-wide identification and expression analysis of the SAUR gene family in Cucumis sativus[J]. Acta Horticulturae Sinica, 2019, 46(6): 1093−1111.
      [34]
      Kodaira K S, Qin F, Tran L S P, et al. Arabidopsis Cys2/His2 Zinc-Finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions[J]. Plant Physiology, 2011, 157(2): 742−756. doi: 10.1104/pp.111.182683
      [35]
      Ma X, Dai S, Qin N, et al. Genome-wide identification and expression analysis of the SAUR gene family in foxtail millet (Setaria italica L.)[J]. BMC Plant Biology, 2023, 23(1): 31. doi: 10.1186/s12870-023-04055-8
      [36]
      Hassan S, Berk K, Aronsson H. Evolution and identification of DREB transcription factors in the wheat genome: modeling, docking and simulation of DREB proteins associated with salt stress[J]. Journal of Biomolecular Structure and Dynamics, Taylor & Francis, 2022, 40(16): 7191−7204.
      [37]
      Yin C, Sun A, Zhou Y, et al. The dynamics of H2A. Z on SMALL AUXIN UP RNAs regulate abscisic acid-auxin signaling crosstalk in Arabidopsis[J]. Journal of Experimental Botany, 2023, 74(14): 4158−4168. doi: 10.1093/jxb/erad131
    • Related Articles

      [1]Zhou Kerou, Chen Zhuo, Yu Zhucheng, Zhong Yang, Shang Ce. Population structure and genetic diversity of Bretschneidera sinensis in Xianxialing Nature Reserve, Zhejiang Province of eastern China[J]. Journal of Beijing Forestry University, 2024, 46(11): 76-82. DOI: 10.12171/j.1000-1522.20230211
      [2]Gao Hongzhi, Huang Xin, Su Hao, Qiao Pengfei, Jiang Zaimin, Shen Yaorong, Cai Jing. Structure and dynamic characteristics of Betula albo-sinensis populations in two regions in the Qinling Mountains of northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(9): 12-20. DOI: 10.12171/j.1000-1522.20210003
      [3]Chen Cun, Ding Changjun, Huang Qinjun, Zhang Jing, Liu Ning, Li Bo, Li Zhenghong, Su Xiaohua. Phenotypic and physiological trait diversity and population structure of Populus deltoides[J]. Journal of Beijing Forestry University, 2021, 43(6): 1-12. DOI: 10.12171/j.1000-1522.20200231
      [4]Wu Xiuping, Xu Xiaogang, Wang Lu, Li Yao. Population structure and spatial distribution point patterns of Tsuga chinensis var. tchekiangensis in Wuyishan Mountain, Jiangxi of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 60-68. DOI: 10.13332/j.1000-1522.20180309
      [5]QIU Er-fa, XU Fei, WANG Cheng, DONG Jian-wen, WU Yong-shu, . Population distribution and structure characteristics of village roadside forest in Fujian Province, eastern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 68-74.
      [6]LIU Pu-xing, LU Chen-yu, YAO Xiao-jun, CAO Li-guo. Structure and spatial distribution patterns of Populus euphratica populations from different habitats in the Dunhuang Oasis[J]. Journal of Beijing Forestry University, 2011, 33(2): 48-52.
      [7]ZHAO Li-qiong, HUANG Hua-guo, LIANG Da-shuang, ZHANG Xiao-li.. Spatial distribution pattern of Picea crassifolia population in Dayekou, Gansu Province[J]. Journal of Beijing Forestry University, 2010, 32(4): 59-64.
      [8]SHI Yu, YU Xin-xiao, YUE Yong-jie, ZHANG Zhen-ming, GAN Jing, WANG Xiao-ping, LI Jin-hai. Pattern analysis of different populations in natural secondary forest of Betula davurica in mountainous area of Beijing.[J]. Journal of Beijing Forestry University, 2009, 31(5): 35-41.
      [9]MA Qin-yan. Analysis of the negative binomial distribution and test of population pattern.[J]. Journal of Beijing Forestry University, 2009, 31(3): 1-5.
      [10]NIU Li-li, YU Xin-xiao, LIU Shu-yan, LIU Yan, YUE Yong-jie, WANG Xiao-ping, CHEN Jun-qi. Life history characteristics and spatial distribution of Pinus tabulaeformis population in Songshan Nature Reserve of Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 17-21.
    • Cited by

      Periodical cited type(7)

      1. 王为,雷俊杰,简佶沛,王利宝. 基于云平台智能灌溉控制系统的油茶苗水分管理研究. 现代农业科技. 2023(20): 110-113+121 .
      2. 董诗芬,王自洪,李丽华,李看清. 不同覆盖措施对初植腾冲红花油茶生长的影响研究. 林业调查规划. 2022(03): 118-121+142 .
      3. 谢胤,余祖华,尹必期,王自洪,寸明辉,徐志映,吴兴波,杨忠品. 腾冲红花油茶主要营养器官含水率年内变化分析. 林业与环境科学. 2021(01): 25-28 .
      4. 胡玉玲,蔡芳丽,卢海燕,罗海秀,贺姣凤. 油茶林地夏季水分管理对油茶产量指标的影响. 江苏林业科技. 2018(03): 23-27+45 .
      5. 刘嘉翔,赵丹,杨建伟,史宝胜. 不同土壤水分条件下北京山梅花生长与耗水特性研究. 河北农业大学学报. 2018(05): 84-89 .
      6. 何小三,徐林初,龚春,王玉娟,刘新亮,赵攀,左继林,俞元春. 干旱胁迫对‘赣无12’苗期光合特性的影响. 中南林业科技大学学报. 2018(12): 52-61 .
      7. 樊星火,樊文勇,黄辉,施重阳,郑永红. 夏季不同灌溉方式对油茶叶片生理指标和花期的影响. 林业科技通讯. 2017(12): 12-14 .

      Other cited types(4)

    Catalog

      Article views (473) PDF downloads (50) Cited by(11)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return