• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liang Yongqi, Li Mingze, Yang Ruixia, Geng Tong, Li Huan. Effects of different filter algorithms on deriving leaf area index (LAI)[J]. Journal of Beijing Forestry University, 2020, 42(1): 54-64. DOI: 10.12171/j.1000-1522.20180268
Citation: Liang Yongqi, Li Mingze, Yang Ruixia, Geng Tong, Li Huan. Effects of different filter algorithms on deriving leaf area index (LAI)[J]. Journal of Beijing Forestry University, 2020, 42(1): 54-64. DOI: 10.12171/j.1000-1522.20180268

Effects of different filter algorithms on deriving leaf area index (LAI)

More Information
  • Received Date: August 20, 2018
  • Revised Date: October 18, 2018
  • Available Online: October 15, 2019
  • Published Date: January 13, 2020
  • ObjectiveFiltering is an important part of data preprocessing when using discrete-return LiDAR to derive leaf area index (LAI). Laser penetration index (LPI), which responses to the canopy’s gap fraction, is a pivotal argument, and can be defined by echoes intensity or count, and is directly influenced by filter precision. So, filter algorithms can affect deriving LAI indirectly.
    MethodIn this paper, we used the open source filter algorithms without manual operation to filter the error points. Using the LPI defined on count, we built model in larch forest and elm forest, Maor Mountain National Park, based on Beer-Lambert law. We compared the filter algorithm of adaptive triangulated irregular network, morphology, local slope, using hybrid filtering as standard. In order to avoid the subjective influence during modelling, we built 100 models by choosing samples randomly.
    ResultIn larch forest, the models’ R-squared under larch was 0.900 3, 0.876 3, 0.892 5,0.877 0, root mean squared error (RMSE) was 0.105 6, 0.134 5, 0.109 7,0.133 2; in elm forest, the models’ R-squared was 0.914 4, 0.903 0, 0.887 2, 0.900 0, root mean squared error (RMSE) was 0.269 0, 0.201 7, 0.189 4, 0.207 0, respectively.
    ConclusionConsidering the sample’s topography, when using discrete-return LiDAR data derive LAI based on LPI, the hybrid algorithm has a better performance on deriving LAI. II error has more influence on deriving LAI than I error.
  • [1]
    Coppin P, Jonckheere I, Nackaerts K, et al. Digital change detection methods in ecosystem monitoring: a review[J]. International Journal of Remote Sensing, 2004, 25(9): 1565−1596. doi: 10.1080/0143116031000101675
    [2]
    You H, Wang T, Skidmore A K, et al. Quantifying the effects of normalisation of airborne LiDAR intensity on coniferous forest leaf area index estimations[J]. Remote Sensing, 2017, 9(2): 163−179. doi: 10.3390/rs9020163
    [3]
    Peduzzi A, Wynne R H, Fox T R, et al. Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data[J]. Forest Ecology & Management, 2012, 270(4): 54−65.
    [4]
    Sumnall M J, Fox T R, Wynne R H, et al. Estimating leaf area index at multiple heights within the understorey component of Loblolly pine forests from airborne discrete-return LiDAR[J]. International Journal of Remote Sensing, 2016, 37(1): 78−99. doi: 10.1080/01431161.2015.1117683
    [5]
    骆社周, 王成, 张贵宾, 等. 机载激光雷达森林叶面积指数反演研究[J]. 地球物理学报, 2013, 56(5):1467−1475. doi: 10.6038/cjg20130505

    Luo S Z, Wang C, Zhang G B, et al. Forest leaf area index (LAI) inversion using airborne LiDAR data[J]. Geophys, 2013, 56(5): 1467−1475. doi: 10.6038/cjg20130505
    [6]
    Chen T, Akciz S O, Hudnut K W, et al. Fault-slip distribution of the 1999 mw 7.1 hector mine earthquake, California, estimated from postearthquake airborne LiDAR data[J]. Bulletin of the Seismological Society of America, 2015, 105: 776−790. doi: 10.1785/0120130108
    [7]
    黄作维, 刘峰, 胡光伟. 基于多尺度虚拟格网的LiDAR点云数据滤波改进方法[J]. 光学学报, 2017, 37(8):346−355.

    Huang Z W, Liu F, Hu G W. Improved method for LiDAR point cloud data filtering based on hierarchical pseudo-grid[J]. Acta Optic Sin, 2017, 37(8): 346−355.
    [8]
    Solberg S. Comparing discrete echoes counts and intensity sums from ALS for estimating forest LAI and gap fraction[C/OL]//International Conference on Silvilaser, Sept. 17−19, 2008: 247−256[2018−05−06]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.591.1374&rep=rep1&type=pdf.
    [9]
    Sithole G, Vosselman G. Experimental comparison of filter algorithms for Bare-Earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2004, 59: 85−101.
    [10]
    Favorskaya M N, Jain L C. Handbook on advances in remote sensing and geographic information systems[M]. Cham:Springer International Publishing, 2017.
    [11]
    Pingel T J, Clarke K C, Mcbride W A. An improved simple morphological filter for the terrain classification of airborne LiDAR data[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2013, 77: 21−30.
    [12]
    Zhao X, Guo Q, Su Y, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2016, 117: 79−91.
    [13]
    Polat N, Uysal M. Investigating performance of airborne LiDAR data filtering algorithms for DTM generation[J]. Measurement, 2015, 63: 61−68. doi: 10.1016/j.measurement.2014.12.017
    [14]
    Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry & Remote Sensing, 2000(33): 110−116.
    [15]
    Zhang K Q, Chen S C, Whitman D, et al. A progressive morphological filter for removing non-ground measurements from airborne LiDAR data[C]. IEEE Transactions on Geoscience and Remote Sensing, 2003 (41): 872−882.
    [16]
    Vosselman G. Slope based filtering of laser altimetry data[C/OL]. Amsterdam: International Archives of Photogrammetry & Remote Sensing, 2000[2018−05−06]. https://www.researchgate.net/publication/228719860_Slope_based_filtering_of_laser_altimetry_data.
    [17]
    Zhao K, García M, Liu S, et al. Terrestrial LiDAR remote sensing of forests: maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution[J]. Agricultural & Forest Meteorology, 2015, 209−210: 100−113.
    [18]
    Solberg S, Hill R, Suarez R. Mapping gap fraction, LAI and defoliation using various ALS penetration variables[J]. International Journal of Remote Sensing, 2010, 31(5): 1227−1244. doi: 10.1080/01431160903380672
    [19]
    Morsdorf F, Kötz B, Meier E, et al. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction[J]. Remote Sensing of Environment, 2006, 104(1): 50−61. doi: 10.1016/j.rse.2006.04.019
    [20]
    Hyyppä J, Hyyppä H, Leckie D, et al. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests[J]. International Journal of Remote Sensing, 2008, 29(5): 1339−1366. doi: 10.1080/01431160701736489
    [21]
    Deng S S, Shi W Z. Integration of different filter algorithms for improving the ground surface extraction from airborne LiDAR data[C/OL]. Proceedings of 8th International Symposium on Spatial Data Quality Implementation Science. Hong Kong: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL-2/W1(2): 105−110[2018−05−06]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.917.8968&rep=rep1&type=pdf.
  • Related Articles

    [1]Mei Xuesong, Dong Lingbo, Chen Guanmou. Driving factors of carbon sink in natural Larix gmelinii forests based on structural equation models[J]. Journal of Beijing Forestry University, 2024, 46(9): 1-10. DOI: 10.12171/j.1000-1522.20230284
    [2]Wu Yan, Li Xinyu, Zhang Yiting, Ding Bo, Zhang Yunlin, Fu Yuhong, Liu Xun. Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 87-94. DOI: 10.12171/j.1000-1522.20220052
    [3]Xu Chao, Long Ting, Wu Xinlei, Chen Jie, Liang Yanjun, Li Jingwen. Reintroducing effects and influencing factors of Taxus cuspidata population[J]. Journal of Beijing Forestry University, 2020, 42(8): 34-42. DOI: 10.12171/j.1000-1522.20190423
    [4]Gao Yan, Zhang Yuqing, Qin Shugao, Zhang Jutao, Liu Zhen. Landscape pattern change and its influencing factors of sand-binding vegetation[J]. Journal of Beijing Forestry University, 2020, 42(4): 102-112. DOI: 10.12171/j.1000-1522.20190061
    [5]He Xiao, Cao Lei, Xu Shenglin, Li Haikui. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 50-58. DOI: 10.13332/j.1000-1522.20190030
    [6]ZHOU Wen-jun, SHA Li-qing, ZHANG Yi-ping, SONG Qing-hai, LIU Yun-tong, DENG Yun, DENG Xiao-bao. Characteristics and influencing factors of soil dissolved organic carbon and nitrogen in a tropical seasonal rainforest in Xishuangbanna,Southwest China.[J]. Journal of Beijing Forestry University, 2016, 38(9): 34-41. DOI: 10.13332/j.1000-1522.20150238
    [7]LI Ning, CHEN Li-hua, YANG Yuan-jun.. Factors influencing root tensile properties of Pinus tabuliformis and Larix principis-rupprechtii.[J]. Journal of Beijing Forestry University, 2015, 37(12): 77-84. DOI: 10.13332/j.1000-1522.20150131
    [8]CHEN Chong, LI Ji-yue, , WANG Yu- tao. Variation of stem sap flow of Salix matsudana and its impact factors.[J]. Journal of Beijing Forestry University, 2008, 30(4): 82-88.
    [9]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [10]JIAO Wen-jun, ZHU Qing-ke, ZHANG Yu-qing, WU Xiu-qin, WANG Na. Distribution of biotic crusts and its influencing factors in the grain-for-green land of the loess region, northern Shaanxi Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 102-107. DOI: 10.13332/j.1000-1522.2007.01.018
  • Cited by

    Periodical cited type(34)

    1. 孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
    2. 裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
    3. 贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
    4. 张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
    5. 罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
    6. 张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
    7. 廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
    8. 贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
    9. 李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
    10. 王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
    11. 孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
    12. 岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
    13. 徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
    14. 杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
    15. 刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
    16. 王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
    17. 谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
    18. 吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
    19. 陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
    20. 王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
    21. 童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
    22. 苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
    23. 刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
    24. 孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
    25. 张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
    26. 林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
    27. 林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
    28. 姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
    29. 林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
    30. 阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
    31. 林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
    32. 赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
    33. 李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
    34. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(26)

Catalog

    Article views (2012) PDF downloads (100) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return