• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liang Yongqi, Li Mingze, Yang Ruixia, Geng Tong, Li Huan. Effects of different filter algorithms on deriving leaf area index (LAI)[J]. Journal of Beijing Forestry University, 2020, 42(1): 54-64. DOI: 10.12171/j.1000-1522.20180268
Citation: Liang Yongqi, Li Mingze, Yang Ruixia, Geng Tong, Li Huan. Effects of different filter algorithms on deriving leaf area index (LAI)[J]. Journal of Beijing Forestry University, 2020, 42(1): 54-64. DOI: 10.12171/j.1000-1522.20180268

Effects of different filter algorithms on deriving leaf area index (LAI)

More Information
  • Received Date: August 20, 2018
  • Revised Date: October 18, 2018
  • Available Online: October 15, 2019
  • Published Date: January 13, 2020
  • ObjectiveFiltering is an important part of data preprocessing when using discrete-return LiDAR to derive leaf area index (LAI). Laser penetration index (LPI), which responses to the canopy’s gap fraction, is a pivotal argument, and can be defined by echoes intensity or count, and is directly influenced by filter precision. So, filter algorithms can affect deriving LAI indirectly.
    MethodIn this paper, we used the open source filter algorithms without manual operation to filter the error points. Using the LPI defined on count, we built model in larch forest and elm forest, Maor Mountain National Park, based on Beer-Lambert law. We compared the filter algorithm of adaptive triangulated irregular network, morphology, local slope, using hybrid filtering as standard. In order to avoid the subjective influence during modelling, we built 100 models by choosing samples randomly.
    ResultIn larch forest, the models’ R-squared under larch was 0.900 3, 0.876 3, 0.892 5,0.877 0, root mean squared error (RMSE) was 0.105 6, 0.134 5, 0.109 7,0.133 2; in elm forest, the models’ R-squared was 0.914 4, 0.903 0, 0.887 2, 0.900 0, root mean squared error (RMSE) was 0.269 0, 0.201 7, 0.189 4, 0.207 0, respectively.
    ConclusionConsidering the sample’s topography, when using discrete-return LiDAR data derive LAI based on LPI, the hybrid algorithm has a better performance on deriving LAI. II error has more influence on deriving LAI than I error.
  • [1]
    Coppin P, Jonckheere I, Nackaerts K, et al. Digital change detection methods in ecosystem monitoring: a review[J]. International Journal of Remote Sensing, 2004, 25(9): 1565−1596. doi: 10.1080/0143116031000101675
    [2]
    You H, Wang T, Skidmore A K, et al. Quantifying the effects of normalisation of airborne LiDAR intensity on coniferous forest leaf area index estimations[J]. Remote Sensing, 2017, 9(2): 163−179. doi: 10.3390/rs9020163
    [3]
    Peduzzi A, Wynne R H, Fox T R, et al. Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data[J]. Forest Ecology & Management, 2012, 270(4): 54−65.
    [4]
    Sumnall M J, Fox T R, Wynne R H, et al. Estimating leaf area index at multiple heights within the understorey component of Loblolly pine forests from airborne discrete-return LiDAR[J]. International Journal of Remote Sensing, 2016, 37(1): 78−99. doi: 10.1080/01431161.2015.1117683
    [5]
    骆社周, 王成, 张贵宾, 等. 机载激光雷达森林叶面积指数反演研究[J]. 地球物理学报, 2013, 56(5):1467−1475. doi: 10.6038/cjg20130505

    Luo S Z, Wang C, Zhang G B, et al. Forest leaf area index (LAI) inversion using airborne LiDAR data[J]. Geophys, 2013, 56(5): 1467−1475. doi: 10.6038/cjg20130505
    [6]
    Chen T, Akciz S O, Hudnut K W, et al. Fault-slip distribution of the 1999 mw 7.1 hector mine earthquake, California, estimated from postearthquake airborne LiDAR data[J]. Bulletin of the Seismological Society of America, 2015, 105: 776−790. doi: 10.1785/0120130108
    [7]
    黄作维, 刘峰, 胡光伟. 基于多尺度虚拟格网的LiDAR点云数据滤波改进方法[J]. 光学学报, 2017, 37(8):346−355.

    Huang Z W, Liu F, Hu G W. Improved method for LiDAR point cloud data filtering based on hierarchical pseudo-grid[J]. Acta Optic Sin, 2017, 37(8): 346−355.
    [8]
    Solberg S. Comparing discrete echoes counts and intensity sums from ALS for estimating forest LAI and gap fraction[C/OL]//International Conference on Silvilaser, Sept. 17−19, 2008: 247−256[2018−05−06]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.591.1374&rep=rep1&type=pdf.
    [9]
    Sithole G, Vosselman G. Experimental comparison of filter algorithms for Bare-Earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2004, 59: 85−101.
    [10]
    Favorskaya M N, Jain L C. Handbook on advances in remote sensing and geographic information systems[M]. Cham:Springer International Publishing, 2017.
    [11]
    Pingel T J, Clarke K C, Mcbride W A. An improved simple morphological filter for the terrain classification of airborne LiDAR data[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2013, 77: 21−30.
    [12]
    Zhao X, Guo Q, Su Y, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2016, 117: 79−91.
    [13]
    Polat N, Uysal M. Investigating performance of airborne LiDAR data filtering algorithms for DTM generation[J]. Measurement, 2015, 63: 61−68. doi: 10.1016/j.measurement.2014.12.017
    [14]
    Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry & Remote Sensing, 2000(33): 110−116.
    [15]
    Zhang K Q, Chen S C, Whitman D, et al. A progressive morphological filter for removing non-ground measurements from airborne LiDAR data[C]. IEEE Transactions on Geoscience and Remote Sensing, 2003 (41): 872−882.
    [16]
    Vosselman G. Slope based filtering of laser altimetry data[C/OL]. Amsterdam: International Archives of Photogrammetry & Remote Sensing, 2000[2018−05−06]. https://www.researchgate.net/publication/228719860_Slope_based_filtering_of_laser_altimetry_data.
    [17]
    Zhao K, García M, Liu S, et al. Terrestrial LiDAR remote sensing of forests: maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution[J]. Agricultural & Forest Meteorology, 2015, 209−210: 100−113.
    [18]
    Solberg S, Hill R, Suarez R. Mapping gap fraction, LAI and defoliation using various ALS penetration variables[J]. International Journal of Remote Sensing, 2010, 31(5): 1227−1244. doi: 10.1080/01431160903380672
    [19]
    Morsdorf F, Kötz B, Meier E, et al. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction[J]. Remote Sensing of Environment, 2006, 104(1): 50−61. doi: 10.1016/j.rse.2006.04.019
    [20]
    Hyyppä J, Hyyppä H, Leckie D, et al. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests[J]. International Journal of Remote Sensing, 2008, 29(5): 1339−1366. doi: 10.1080/01431160701736489
    [21]
    Deng S S, Shi W Z. Integration of different filter algorithms for improving the ground surface extraction from airborne LiDAR data[C/OL]. Proceedings of 8th International Symposium on Spatial Data Quality Implementation Science. Hong Kong: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL-2/W1(2): 105−110[2018−05−06]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.917.8968&rep=rep1&type=pdf.
  • Cited by

    Periodical cited type(11)

    1. 李捷,孙文涛,庞晓攀,徐雪婷,杨欢,郭正刚. 高原鼠兔干扰对高寒草甸植物物种和功能性状beta多样性的影响. 生态学报. 2024(07): 2993-3003 .
    2. 尹才佳,马龙,邹书珍,康迪. 地震滑坡体恢复后植物β多样性格局及其环境响应. 西北植物学报. 2023(02): 316-325 .
    3. 陈瑶,余雯静,陈珑,郭汝凤,吴承祯,李键. 基于同质园的不同品种茶树叶性状变异及经济谱. 应用与环境生物学报. 2023(03): 720-729 .
    4. Jianghao ZHAO,Yingying LIU,Xiaoguo BAI,Anping LI,Yanjiao LI,Shiping CHENG,Guang QI. Phylogenetic Structure of Low Altitude Forest Communities in Baotianman Mountain. Asian Agricultural Research. 2022(06): 31-36 .
    5. 王健铭,曲梦君,王寅,冯益明,吴波,卢琦,何念鹏,李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素. 生物多样性. 2022(06): 62-75 .
    6. 杨欢,王寅,王健铭,夏延国,李景文,贾晓红,吴波. 环境过滤和扩散限制对库姆塔格沙漠南缘植物群落β-多样性的影响. 中国沙漠. 2021(03): 147-154 .
    7. 高辉,刘丽娟,方江平. 西藏色季拉山森林群落沿海拔梯度变化格局. 广西师范大学学报(自然科学版). 2020(06): 122-130 .
    8. 周昌艳,王彬,邓云,乌俊杰,曹敏,林露湘. 林冠结构是局域尺度木本植物功能性状beta多样性形成的重要驱动力. 生物多样性. 2020(12): 1546-1557 .
    9. 庞志强,姜丽莎,缪祥蓉,亓峥,卢炜丽. 昆明市主要园林植物叶性状及叶经济谱研究. 西南林业大学学报(自然科学). 2019(04): 53-60 .
    10. 刘丽杰,尹航,金慧,赵莹,贾翔. 基于生态文明视角下长白山生物多样性保护研究探索. 吉林农业. 2018(04): 97 .
    11. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(14)

Catalog

    Article views (2014) PDF downloads (101) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return