Citation: | Liang Yongqi, Li Mingze, Yang Ruixia, Geng Tong, Li Huan. Effects of different filter algorithms on deriving leaf area index (LAI)[J]. Journal of Beijing Forestry University, 2020, 42(1): 54-64. DOI: 10.12171/j.1000-1522.20180268 |
[1] |
Coppin P, Jonckheere I, Nackaerts K, et al. Digital change detection methods in ecosystem monitoring: a review[J]. International Journal of Remote Sensing, 2004, 25(9): 1565−1596. doi: 10.1080/0143116031000101675
|
[2] |
You H, Wang T, Skidmore A K, et al. Quantifying the effects of normalisation of airborne LiDAR intensity on coniferous forest leaf area index estimations[J]. Remote Sensing, 2017, 9(2): 163−179. doi: 10.3390/rs9020163
|
[3] |
Peduzzi A, Wynne R H, Fox T R, et al. Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data[J]. Forest Ecology & Management, 2012, 270(4): 54−65.
|
[4] |
Sumnall M J, Fox T R, Wynne R H, et al. Estimating leaf area index at multiple heights within the understorey component of Loblolly pine forests from airborne discrete-return LiDAR[J]. International Journal of Remote Sensing, 2016, 37(1): 78−99. doi: 10.1080/01431161.2015.1117683
|
[5] |
骆社周, 王成, 张贵宾, 等. 机载激光雷达森林叶面积指数反演研究[J]. 地球物理学报, 2013, 56(5):1467−1475. doi: 10.6038/cjg20130505
Luo S Z, Wang C, Zhang G B, et al. Forest leaf area index (LAI) inversion using airborne LiDAR data[J]. Geophys, 2013, 56(5): 1467−1475. doi: 10.6038/cjg20130505
|
[6] |
Chen T, Akciz S O, Hudnut K W, et al. Fault-slip distribution of the 1999 mw 7.1 hector mine earthquake, California, estimated from postearthquake airborne LiDAR data[J]. Bulletin of the Seismological Society of America, 2015, 105: 776−790. doi: 10.1785/0120130108
|
[7] |
黄作维, 刘峰, 胡光伟. 基于多尺度虚拟格网的LiDAR点云数据滤波改进方法[J]. 光学学报, 2017, 37(8):346−355.
Huang Z W, Liu F, Hu G W. Improved method for LiDAR point cloud data filtering based on hierarchical pseudo-grid[J]. Acta Optic Sin, 2017, 37(8): 346−355.
|
[8] |
Solberg S. Comparing discrete echoes counts and intensity sums from ALS for estimating forest LAI and gap fraction[C/OL]//International Conference on Silvilaser, Sept. 17−19, 2008: 247−256[2018−05−06]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.591.1374&rep=rep1&type=pdf.
|
[9] |
Sithole G, Vosselman G. Experimental comparison of filter algorithms for Bare-Earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2004, 59: 85−101.
|
[10] |
Favorskaya M N, Jain L C. Handbook on advances in remote sensing and geographic information systems[M]. Cham:Springer International Publishing, 2017.
|
[11] |
Pingel T J, Clarke K C, Mcbride W A. An improved simple morphological filter for the terrain classification of airborne LiDAR data[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2013, 77: 21−30.
|
[12] |
Zhao X, Guo Q, Su Y, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2016, 117: 79−91.
|
[13] |
Polat N, Uysal M. Investigating performance of airborne LiDAR data filtering algorithms for DTM generation[J]. Measurement, 2015, 63: 61−68. doi: 10.1016/j.measurement.2014.12.017
|
[14] |
Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry & Remote Sensing, 2000(33): 110−116.
|
[15] |
Zhang K Q, Chen S C, Whitman D, et al. A progressive morphological filter for removing non-ground measurements from airborne LiDAR data[C]. IEEE Transactions on Geoscience and Remote Sensing, 2003 (41): 872−882.
|
[16] |
Vosselman G. Slope based filtering of laser altimetry data[C/OL]. Amsterdam: International Archives of Photogrammetry & Remote Sensing, 2000[2018−05−06]. https://www.researchgate.net/publication/228719860_Slope_based_filtering_of_laser_altimetry_data.
|
[17] |
Zhao K, García M, Liu S, et al. Terrestrial LiDAR remote sensing of forests: maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution[J]. Agricultural & Forest Meteorology, 2015, 209−210: 100−113.
|
[18] |
Solberg S, Hill R, Suarez R. Mapping gap fraction, LAI and defoliation using various ALS penetration variables[J]. International Journal of Remote Sensing, 2010, 31(5): 1227−1244. doi: 10.1080/01431160903380672
|
[19] |
Morsdorf F, Kötz B, Meier E, et al. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction[J]. Remote Sensing of Environment, 2006, 104(1): 50−61. doi: 10.1016/j.rse.2006.04.019
|
[20] |
Hyyppä J, Hyyppä H, Leckie D, et al. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests[J]. International Journal of Remote Sensing, 2008, 29(5): 1339−1366. doi: 10.1080/01431160701736489
|
[21] |
Deng S S, Shi W Z. Integration of different filter algorithms for improving the ground surface extraction from airborne LiDAR data[C/OL]. Proceedings of 8th International Symposium on Spatial Data Quality Implementation Science. Hong Kong: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL-2/W1(2): 105−110[2018−05−06]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.917.8968&rep=rep1&type=pdf.
|
1. |
黎明慧,李远发. 径阶距对评估南盘江流域天然林物种多样性的影响. 南京林业大学学报(自然科学版). 2023(04): 166-174 .
![]() | |
2. |
刘丹,郭忠玲,崔晓阳,范春楠. 5种东北红豆杉植物群丛及其物种多样性的比较. 生物多样性. 2020(03): 340-349 .
![]() | |
3. |
徐艺文,陈浩,赵洪波. 洈水国家湿地公园植物多样性、主要群落及数量特征. 湖北林业科技. 2019(04): 13-18+68 .
![]() | |
4. |
李秀宇,郭琪,董黎,孙宇涵,牛东升,刘佳平,王红生,李云. 山西省吉县刺槐无性系种质遗传多样性的EST-SSR分析. 北京林业大学学报. 2019(07): 39-48 .
![]() | |
5. |
范冬冬,张健飞,苑美燕,张志东. 不同经营模式华北落叶松人工林草本物种多样性差异分析. 林业与生态科学. 2018(02): 159-164 .
![]() | |
6. |
张学礼. 晋北半干旱地区乔木树种基因资源的收集和利用. 花卉. 2018(12): 191-192 .
![]() | |
7. |
刘建荣. 云顶山自然保护区植物群落物种多样性研究. 中南林业科技大学学报. 2018(10): 79-85 .
![]() | |
8. |
苏红华,王红,陈宗杰,余传文,陈晓熹,吴建辉,周璋,李意德,许涵. 海南尖峰岭热带半落叶季雨林物种组成、结构及其多样性特征. 林业与环境科学. 2018(06): 21-27 .
![]() |