Citation: | Xin Shidong, Jiang Lichun. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forestry University, 2020, 42(2): 1-8. DOI: 10.12171/j.1000-1522.20190014 |
[1] |
曾伟生, 廖志云. 削度方程的研究[J]. 林业科学, 1997, 33(2):127−132. doi: 10.3321/j.issn:1001-7488.1997.02.004
Zeng W S, Liao Z Y. A study on taper equation[J]. Scientia Silvae Sinicae, 1997, 33(2): 127−132. doi: 10.3321/j.issn:1001-7488.1997.02.004
|
[2] |
Jiang L C, Brooks J R, Wang J X. Compatible taper and volume equations for yellow-poplar in West Virginia[J]. Forest Ecology and Management, 2005, 213(1/3): 399−409.
|
[3] |
Corral-Rivas J J, Diéguez-Aranda U, Rivas S C, et al. A merchantable volume system for major pine species in El Salto, Durango (Mexico)[J]. Forest Ecology and Management, 2007, 238(1/3): 118−129.
|
[4] |
孟宪宇. 削度方程和出材率表的研究[J]. 南京林产工业学院学报, 1982(1):122−133.
Meng X Y. Studies of taper equations and the table of merchantable volumes[J]. Journal of Nanjing Technological College of Forest Products, 1982(1): 122−133.
|
[5] |
姜立春, 马英莉, 李耀翔. 大兴安岭不同区域兴安落叶松可变指数削度方程[J]. 林业科学, 2016, 52(2):17−25.
Jiang L C, Ma Y L, Li Y X. Variable-exponent taper models for Dahurian larch in different regions of Daxing’anling[J]. Scientia Silvae Sinicae, 2016, 52(2): 17−25.
|
[6] |
Rodriguez F, Lizarralde I, Fernández-Landa A, et al. Non-destructive measurement techniques for taper equation development: a study case in the Spanish Northern Iberian Range[J]. European Journal of Forest Research, 2014, 133(2): 213−223. doi: 10.1007/s10342-013-0739-5
|
[7] |
Sabatia C O. Use of upper stem diameters in a polynomial taper equation for New Zealand radiata pine: an evaluation[J]. New Zealand Journal of Forestry Science, 2016, 46(1): 14. doi: 10.1186/s40490-016-0070-2
|
[8] |
Kozak A. My last words on taper equations[J]. The Forestry Chronicle, 2004, 80(4): 507−515. doi: 10.5558/tfc80507-4
|
[9] |
Bi H Q. Trigonometric variable-form taper equations for Australian eucalypts[J]. Forest Science, 2000, 46(3): 397−409.
|
[10] |
Schröder T, Costa E A, Valério A F, et al. Taper equations for Pinus elliottii Engelm. in Southern Parana, Brazil[J]. Forest Science, 2015, 61(2): 311−319. doi: 10.5849/forsci.14-054
|
[11] |
Jiang L C, Brooks J R. Taper, volume, and weight equations for red pine in West Virginia[J]. Northern Journal of Applied Forestry, 2008, 25(3): 151−153. doi: 10.1093/njaf/25.3.151
|
[12] |
Garber S M, Maguire D A. Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures[J]. Forest Ecology and Management, 2003, 179(1/3): 507−522.
|
[13] |
Yang Y Q, Huang S M, Trincado G, et al. Nonlinear mixed-effects modeling of variable-exponent taper equations for lodgepole pine in Alberta, Canada[J]. European Journal of Forest Research, 2009, 128(4): 415−429. doi: 10.1007/s10342-009-0286-2
|
[14] |
Trincado G, Burkhart H E. A generalized approach for modeling and localizing stem profile curves[J]. Forest Science, 2006, 52(6): 670−682.
|
[15] |
Koenker R, Bassett G, Jr. Regression quantiles[J]. Econometrica, 1978, 46(1): 33−50. doi: 10.2307/1913643
|
[16] |
Cade B S, Noon B R. A gentle introduction to quantile regression for ecologists[J]. Frontiers in Ecology and the Environment, 2003, 1(8): 412−420. doi: 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2
|
[17] |
Geraci M, Bottai M. Quantile regression for longitudinal data using the asymmetric Laplace distribution[J]. Biostatistics, 2007, 8(1): 140−154. doi: 10.1093/biostatistics/kxj039
|
[18] |
高慧淋, 董利虎, 李凤日. 基于分位数回归的长白落叶松人工林最大密度线[J]. 应用生态学报, 2016, 27(11):3420−3426.
Gao H L, Dong L H, Li F R. Maximum density-size line for Larix olgensis plantations based on quantile regression[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3420−3426.
|
[19] |
Cao Q V, Wang J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015, 61(2): 213−219. doi: 10.5849/forsci.14-008
|
[20] |
Zhang L J, Bi H Q, Gove J H, et al. A comparison of alternative methods for estimating the self-thinning boundary line[J]. Canadian Journal of Forest Research, 2005, 35(6): 1507−1514. doi: 10.1139/x05-070
|
[21] |
Zang H, Lei X D, Zeng W S. Height-diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models[J]. Forestry: An International Journal of Forest Research, 2016, 89(4): 434−445. doi: 10.1093/forestry/cpw022
|
[22] |
Kozak A, Munro D D, Smith J H G. Taper functions and their application in forest inventory[J]. The Forestry Chronicle, 1969, 45(4): 278−283. doi: 10.5558/tfc45278-4
|
[23] |
Max T A, Burkhart H E. Segmented polynomial regression applied to taper equations[J]. Forest Science, 1976, 22(3): 283−289.
|
[24] |
SAS/OR® 9.22 User’s guide: mathematical programming[M]. Cary, NC: SAS Institute Inc, 2010.
|
[25] |
Rodriguez F, Lizarralde I, Bravo F. Comparison of stem taper equations for eight major tree species in the Spanish Plateau[J]. Forest Systems, 2015, 24(3): e034. doi: 10.5424/fs/2015243-06229
|
[26] |
姜立春, 李凤日, 刘瑞龙. 兴安落叶松树干削度和材积相容模型[J]. 北京林业大学学报, 2011, 33(5):1−7.
Jiang L C, Li F R, Liu R L. Compatible stem taper and volume models for Dahurian larch[J]. Journal of Beijing Forestry University, 2011, 33(5): 1−7.
|
[27] |
Rojo A, Perales X, Sánchez-Rodríguez F, et al. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain)[J]. European Journal of Forest Research, 2005, 124(3): 177−186. doi: 10.1007/s10342-005-0066-6
|
[28] |
Tang C, Wang C S, Pang S J, et al. Stem taper equations for Betula alnoides in South China[J]. Journal of Tropical Forest Science, 2017, 29(1): 80−92.
|
[29] |
Özçelik R, Cao Q V, Trincado G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. Forest Ecology and Management, 2018, 419−420: 240−248. doi: 10.1016/j.foreco.2018.03.051
|
[30] |
Evans A M, Finkral A J. A new look at spread rates of exotic diseases in North American Forests[J]. Forest Science, 2010, 56(5): 453−459.
|
[31] |
Mäkinen A, Kangas A, Kalliovirta J, et al. Comparison of treewise and standwise forest simulators by means of quantile regression[J]. Forest Ecology and Management, 2008, 255(7): 2709−2717. doi: 10.1016/j.foreco.2008.01.048
|
[32] |
Mehtätalo L, Gregoire T G, Burkhart H E. Comparing strategies for modeling tree diameter percentiles from remeasured plots[J]. Environmetrics, 2008, 19(5): 529−548. doi: 10.1002/env.896
|
[33] |
Doyog N D, Lee Y J, Lee S J, et al. Compatible taper and stem volume equations for Larix kaempferi (Japanese larch) species of South Korea[J]. Journal of Mountain Science, 2017, 14(7): 1341−1349. doi: 10.1007/s11629-016-4291-x
|