• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xin Shidong, Jiang Lichun. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forestry University, 2020, 42(2): 1-8. DOI: 10.12171/j.1000-1522.20190014
Citation: Xin Shidong, Jiang Lichun. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forestry University, 2020, 42(2): 1-8. DOI: 10.12171/j.1000-1522.20190014

Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression

More Information
  • Received Date: January 14, 2019
  • Revised Date: April 22, 2019
  • Available Online: January 01, 2020
  • Published Date: March 02, 2020
  • ObjectiveThe aim of this study was to develop stem taper equation for Pinus sylvestris based on quantile regression, and the prediction accuracy of the nine quantiles (τ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and the traditional nonlinear regression stem taper equations was compared and analyzed.
    MethodThe stem taper data of 154 Pinus sylvestris plantations in Jinsha Forest Farm of Qitaihe Forestry Bureau was taken as the research object. The single, segmented and variable form taper equations were selected, and the nonlinear quantile regression method was used to construct the stem taper equations of Pinus sylvestris. The performance of all constructed stem taper equations was compared and analyzed by these evaluation statistics: coefficient of determination (R2), mean absolute bias (MAB), root mean square error (RMSE), mean percentage of bias (MPB).
    Result(1) The results showed that the stem taper equations could converge at 9 quantiles (τ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), respectively. Quantile regression method can flexibly predict changes in taper curve of each quantile. (2) Compared with the nonlinear regression, the stem taper equations based on the median (τ = 0.5) perform best during the fitting process. The best performance was obtained for the variable exponential equation. (3) The validation results also showed that compared with the nonlinear regression equations, the MAB and MPB of the single taper equation based on the median (τ = 0.5) both decreased by 26.7% and the RMSE decreased by 19.9%. The segmented equation and the variable form equation based on the median (τ = 0.5) showed the better prediction ability. (4) The prediction equations of the median regression are better than the corresponding nonlinear equations for the most stem sections.
    ConclusionQuantile regression method is a robust modeling method, the variable exponential equation based on the median (τ = 0.5) shows more prediction precision. It is suitable for the prediction of stem taper for Pinus sylvestris in this region.
  • [1]
    曾伟生, 廖志云. 削度方程的研究[J]. 林业科学, 1997, 33(2):127−132. doi: 10.3321/j.issn:1001-7488.1997.02.004

    Zeng W S, Liao Z Y. A study on taper equation[J]. Scientia Silvae Sinicae, 1997, 33(2): 127−132. doi: 10.3321/j.issn:1001-7488.1997.02.004
    [2]
    Jiang L C, Brooks J R, Wang J X. Compatible taper and volume equations for yellow-poplar in West Virginia[J]. Forest Ecology and Management, 2005, 213(1/3): 399−409.
    [3]
    Corral-Rivas J J, Diéguez-Aranda U, Rivas S C, et al. A merchantable volume system for major pine species in El Salto, Durango (Mexico)[J]. Forest Ecology and Management, 2007, 238(1/3): 118−129.
    [4]
    孟宪宇. 削度方程和出材率表的研究[J]. 南京林产工业学院学报, 1982(1):122−133.

    Meng X Y. Studies of taper equations and the table of merchantable volumes[J]. Journal of Nanjing Technological College of Forest Products, 1982(1): 122−133.
    [5]
    姜立春, 马英莉, 李耀翔. 大兴安岭不同区域兴安落叶松可变指数削度方程[J]. 林业科学, 2016, 52(2):17−25.

    Jiang L C, Ma Y L, Li Y X. Variable-exponent taper models for Dahurian larch in different regions of Daxing’anling[J]. Scientia Silvae Sinicae, 2016, 52(2): 17−25.
    [6]
    Rodriguez F, Lizarralde I, Fernández-Landa A, et al. Non-destructive measurement techniques for taper equation development: a study case in the Spanish Northern Iberian Range[J]. European Journal of Forest Research, 2014, 133(2): 213−223. doi: 10.1007/s10342-013-0739-5
    [7]
    Sabatia C O. Use of upper stem diameters in a polynomial taper equation for New Zealand radiata pine: an evaluation[J]. New Zealand Journal of Forestry Science, 2016, 46(1): 14. doi: 10.1186/s40490-016-0070-2
    [8]
    Kozak A. My last words on taper equations[J]. The Forestry Chronicle, 2004, 80(4): 507−515. doi: 10.5558/tfc80507-4
    [9]
    Bi H Q. Trigonometric variable-form taper equations for Australian eucalypts[J]. Forest Science, 2000, 46(3): 397−409.
    [10]
    Schröder T, Costa E A, Valério A F, et al. Taper equations for Pinus elliottii Engelm. in Southern Parana, Brazil[J]. Forest Science, 2015, 61(2): 311−319. doi: 10.5849/forsci.14-054
    [11]
    Jiang L C, Brooks J R. Taper, volume, and weight equations for red pine in West Virginia[J]. Northern Journal of Applied Forestry, 2008, 25(3): 151−153. doi: 10.1093/njaf/25.3.151
    [12]
    Garber S M, Maguire D A. Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures[J]. Forest Ecology and Management, 2003, 179(1/3): 507−522.
    [13]
    Yang Y Q, Huang S M, Trincado G, et al. Nonlinear mixed-effects modeling of variable-exponent taper equations for lodgepole pine in Alberta, Canada[J]. European Journal of Forest Research, 2009, 128(4): 415−429. doi: 10.1007/s10342-009-0286-2
    [14]
    Trincado G, Burkhart H E. A generalized approach for modeling and localizing stem profile curves[J]. Forest Science, 2006, 52(6): 670−682.
    [15]
    Koenker R, Bassett G, Jr. Regression quantiles[J]. Econometrica, 1978, 46(1): 33−50. doi: 10.2307/1913643
    [16]
    Cade B S, Noon B R. A gentle introduction to quantile regression for ecologists[J]. Frontiers in Ecology and the Environment, 2003, 1(8): 412−420. doi: 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2
    [17]
    Geraci M, Bottai M. Quantile regression for longitudinal data using the asymmetric Laplace distribution[J]. Biostatistics, 2007, 8(1): 140−154. doi: 10.1093/biostatistics/kxj039
    [18]
    高慧淋, 董利虎, 李凤日. 基于分位数回归的长白落叶松人工林最大密度线[J]. 应用生态学报, 2016, 27(11):3420−3426.

    Gao H L, Dong L H, Li F R. Maximum density-size line for Larix olgensis plantations based on quantile regression[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3420−3426.
    [19]
    Cao Q V, Wang J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015, 61(2): 213−219. doi: 10.5849/forsci.14-008
    [20]
    Zhang L J, Bi H Q, Gove J H, et al. A comparison of alternative methods for estimating the self-thinning boundary line[J]. Canadian Journal of Forest Research, 2005, 35(6): 1507−1514. doi: 10.1139/x05-070
    [21]
    Zang H, Lei X D, Zeng W S. Height-diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models[J]. Forestry: An International Journal of Forest Research, 2016, 89(4): 434−445. doi: 10.1093/forestry/cpw022
    [22]
    Kozak A, Munro D D, Smith J H G. Taper functions and their application in forest inventory[J]. The Forestry Chronicle, 1969, 45(4): 278−283. doi: 10.5558/tfc45278-4
    [23]
    Max T A, Burkhart H E. Segmented polynomial regression applied to taper equations[J]. Forest Science, 1976, 22(3): 283−289.
    [24]
    SAS/OR® 9.22 User’s guide: mathematical programming[M]. Cary, NC: SAS Institute Inc, 2010.
    [25]
    Rodriguez F, Lizarralde I, Bravo F. Comparison of stem taper equations for eight major tree species in the Spanish Plateau[J]. Forest Systems, 2015, 24(3): e034. doi: 10.5424/fs/2015243-06229
    [26]
    姜立春, 李凤日, 刘瑞龙. 兴安落叶松树干削度和材积相容模型[J]. 北京林业大学学报, 2011, 33(5):1−7.

    Jiang L C, Li F R, Liu R L. Compatible stem taper and volume models for Dahurian larch[J]. Journal of Beijing Forestry University, 2011, 33(5): 1−7.
    [27]
    Rojo A, Perales X, Sánchez-Rodríguez F, et al. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain)[J]. European Journal of Forest Research, 2005, 124(3): 177−186. doi: 10.1007/s10342-005-0066-6
    [28]
    Tang C, Wang C S, Pang S J, et al. Stem taper equations for Betula alnoides in South China[J]. Journal of Tropical Forest Science, 2017, 29(1): 80−92.
    [29]
    Özçelik R, Cao Q V, Trincado G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. Forest Ecology and Management, 2018, 419−420: 240−248. doi: 10.1016/j.foreco.2018.03.051
    [30]
    Evans A M, Finkral A J. A new look at spread rates of exotic diseases in North American Forests[J]. Forest Science, 2010, 56(5): 453−459.
    [31]
    Mäkinen A, Kangas A, Kalliovirta J, et al. Comparison of treewise and standwise forest simulators by means of quantile regression[J]. Forest Ecology and Management, 2008, 255(7): 2709−2717. doi: 10.1016/j.foreco.2008.01.048
    [32]
    Mehtätalo L, Gregoire T G, Burkhart H E. Comparing strategies for modeling tree diameter percentiles from remeasured plots[J]. Environmetrics, 2008, 19(5): 529−548. doi: 10.1002/env.896
    [33]
    Doyog N D, Lee Y J, Lee S J, et al. Compatible taper and stem volume equations for Larix kaempferi (Japanese larch) species of South Korea[J]. Journal of Mountain Science, 2017, 14(7): 1341−1349. doi: 10.1007/s11629-016-4291-x
  • Cited by

    Periodical cited type(3)

    1. 马建华,杨艳君,赵红梅,冯玉杰,罗爱国. 高粱低氮胁迫相关novel-miRNA的鉴定及其靶基因预测. 应用与环境生物学报. 2024(02): 377-384 .
    2. 张宇,董国颂,张廷婷. 木本植物miRNA研究进展. 山东农业科学. 2023(08): 167-173 .
    3. 张紫阳,刘艳,魏瑞研,林元震. 木本植物miRNAs参与环境胁迫应答的研究进展. 分子植物育种. 2021(16): 5372-5379 .

    Other cited types(3)

Catalog

    Article views (5348) PDF downloads (129) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return