Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Niu Yilong, Dong Lihu, Li Fengri. Site index model for Larix olgensis plantation based on generalized algebraic difference approach derivation[J]. Journal of Beijing Forestry University, 2020, 42(2): 9-18. DOI: 10.12171/j.1000-1522.20190036
Citation: Niu Yilong, Dong Lihu, Li Fengri. Site index model for Larix olgensis plantation based on generalized algebraic difference approach derivation[J]. Journal of Beijing Forestry University, 2020, 42(2): 9-18. DOI: 10.12171/j.1000-1522.20190036

Site index model for Larix olgensis plantation based on generalized algebraic difference approach derivation

More Information
  • Received Date: January 14, 2019
  • Revised Date: March 13, 2019
  • Available Online: January 02, 2020
  • Published Date: March 02, 2020
  • Objective Forest site quality assessment is fundamental to forest management and important for estimating forest growth and yields, evaluating forest potential productivity, and making suitable silviculture practices. In this study, the generalized algebraic difference approach (GADA) method was used to develop the more flexible polymorphic site index model based on 60 stem analysis data of dominant and co-dominant trees. The model will provide basic reference for evaluation of the site quality for Larix olgensis plantation in Heilongjiang Province of northeastern China.
    Method By selecting the growth equations of modification of the Weibull equation, Korf equation and Richards function, 6 difference site index models were developed by GADA method based on the stem analysis data collected from 1994 to 2017 in Heilongjiang Province. The parameters of model were fitted with nonlinear least square method. Combined with fitting data and validation data set, the model was preliminarily selected by four indexes, i.e. R2, root mean square error (RMSE), modelling efficiency, and average absolute error. The optimal models were further screened by residual plots and site index curve clusters. The optimal model and the model developed from ADA method by the same basic equation were compared and evaluated through site index curve cluster and parameters, ages when annual growth reaching the maximum value (inflection) and the values.
    Result The difference model based on the Richards equation h=a(1ebt)c with free parameters a=eX0,c=c2/X0, X0=12[lnh1+lnh124c2ln(1ebt1)] was selected as the optimal model. The results of its parameter estimations were b = 0.046 8 and c2 = 4.675 4, respectively. The goodness of fit and validation indicators of model were as follows: R2 was 0.987 4, RMSE was 0.749 1, MAE was 0.904 0, and EF was 97.04%. Compared with the model developed by ADA method, the optimal model derived by GADA method can better predict the growth process of dominant trees.
    Conclusion In the derivation of the status index model, according to the GADA method, the difference model derived from specifying multiple parameters as free parameters has not only good fitting effect, but also can conform to the properties of multiple asymptotic lines and curve polymorphism at the same time, while the ADA method can only satisfy one of them at the same time. According to the fitting results of the optimal model, the asymptotic value of the high growth curve for the dominant tree increases gradually with the increase of the site index, and the time of inflection position occurs earlier. This shows that the Larix olgensis plantation with better site conditions, the growth rate and maximum value of the dominant tree height increase, and the maximum value of height growth rate occurs earlier.
  • [1]
    郭小阳, 吴恒, 田相林, 等. 基于优势高模型分析多源数据对立地质量评价的影响[J]. 西北林学院学报, 2017, 32(6):184−189. doi: 10.3969/j.issn.1001-7461.2017.06.28

    Guo X Y, Wu H, Tian X L, et al. Effects of multiple source data on site evaluation based on dominant height modeling[J]. Journal of Northwest Forestry University, 2017, 32(6): 184−189. doi: 10.3969/j.issn.1001-7461.2017.06.28
    [2]
    Monserud R A. Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type[J]. Forest Science, 1984, 30(4): 943−965.
    [3]
    McDill M E, Amateis R L. Measuring forest site quality using the parameters of a dimensionally compatible height growth function[J]. Forest Science, 1992, 38(2): 409−429.
    [4]
    Bailey R L, Clutter J L. Base-age invariant polymorphic site curves[J]. Forest Science, 1974, 20(2): 155−159.
    [5]
    Goelz J C G, Burk T E. Development of a well-behaved site index equation: jack pine in north central Ontario[J]. Canadian Journal of Forest Research, 1992, 22(6): 776−784. doi: 10.1139/x92-106
    [6]
    Amaro A, Reed D, Tomé M, et al. Modeling dominant height growth: eucalyptus plantations in Portugal[J]. Forest Science, 1998, 44(1): 37−46.
    [7]
    Palahí M, Tomé M, Pukkala T, et al. Site index model for Pinus sylvestris in north-east Spain[J]. Forest Ecology and Management, 2004, 187(1): 35−47. doi: 10.1016/S0378-1127(03)00312-8
    [8]
    Bravo-Oviedo A, Del Río M, Montero G. Site index curves and growth model for Mediterranean maritime pine (Pinus pinaster Ait.) in Spain[J]. Forest Ecology and Management, 2004, 201(2/3): 187−197.
    [9]
    Diéguez-Aranda U, González J G Á, Anta M B, et al. Site quality equations for Pinus sylvestris L. plantations in Galicia (northwestern Spain)[J]. Annals of Forest Science, 2005, 62(2): 143−152. doi: 10.1051/forest:2005006
    [10]
    Bravo-Oviedo A, Río M D, Montero G. Geographic variation and parameter assessment in generalized algebraic difference site index modelling[J]. Forest Ecology and Management, 2007, 247(1/3): 107−119.
    [11]
    Cieszewski C J, Bailey R L. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes[J]. Forest Science, 2000, 46(1): 116−126.
    [12]
    曹元帅, 孙玉军. 基于广义代数差分法的杉木人工林地位指数模型[J]. 南京林业大学学报(自然科学版), 2017, 41(5):79−84.

    Cao Y S, Sun Y J. Generalized algebraic difference site index model for Chinese fir plantation[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(5): 79−84.
    [13]
    彭娓, 李凤日, 董利虎. 黑龙江省长白落叶松人工林单木生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(3):19−27.

    Peng W, Li F R, Dong L H. Individual tree diameter growth model for Larix olgensis plantation in Heilongjiang Province, China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(3): 19−27.
    [14]
    张智昌. 落叶松人工林枝条生长与节子大小预测模型的研究[D]. 哈尔滨: 东北林业大学, 2010.

    Zhang Z C. Predicting models of branch growth and knot properties for larch plantation[D]. Harbin: Northeast Forestry University, 2010.
    [15]
    高瑞馨, 尹艳豹, 王凤友. 黑龙江林口林业局森林景观格局特征[J]. 生态学杂志, 2007, 26(7):995−1001. doi: 10.3321/j.issn:1000-4890.2007.07.006

    Gao R X, Yin Y B, Wang F Y. Characters of forest landscape patterns in Linkou Forestry Bureau of Heilongjiang Province[J]. Chinese Journal of Ecology, 2007, 26(7): 995−1001. doi: 10.3321/j.issn:1000-4890.2007.07.006
    [16]
    Zeide B. Analysis of growth equations[J]. Forest Science, 1993, 39(3): 594−616. doi: 10.1093/forestscience/39.3.594
    [17]
    Kalbi S, Fallah A, Bettinger P, et al. Mixed-effects modeling for tree height prediction models of Oriental beech in the Hyrcanian forests[J]. Journal of Forestry Research, 2018, 29(5): 1195−1204. doi: 10.1007/s11676-017-0551-z
    [18]
    Özçelik R, Cao Q V, Trincado G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. Forest Ecology and Management, 2018, 419−420: 240−248. doi: 10.1016/j.foreco.2018.03.051
    [19]
    高慧淋, 董利虎, 李凤日. 黑龙江省红松和长白落叶松人工林树冠外部轮廓模拟[J]. 南京林业大学学报(自然科学版), 2018, 42(3):10−18.

    Gao H L, Dong L H, Li F R. Modelling outer crown profile for planted Pinus koraiensis and Larix olgensis trees in Heilongjiang Province, China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(3): 10−18.
    [20]
    朱光玉, 康立, 何海梅, 等. 基于树高−年龄分级的杉木人工林多形立地指数曲线模型研究[J]. 中南林业科技大学学报, 2017, 37(7):18−29.

    Zhu G Y, Kang L, He H M, et al. Study on polymorphic site index curve model based on height-age classification for Cunninghamia lanceolata plantation[J]. Journal of Central South University of Forestry & Technology, 2017, 37(7): 18−29.
    [21]
    孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest measuration[M]. 3rd ed. Beijing: China Forestry Publishing House, 2006.
    [22]
    Cieszewski C J, Strub M, Zasada M. New dynamic site equation that fits best the Schwappach data for Scots pine (Pinus sylvestris L.) in Central Europe[J]. Forest Ecology and Management, 2007, 243(1): 83−93. doi: 10.1016/j.foreco.2007.02.025
    [23]
    Burhart H E, Tomé M. Modeling forest stand development[M]//Burhart H E, Tomé M. Modeling forest trees and stands. Dordrecht: Springer, 2012.
  • Cited by

    Periodical cited type(9)

    1. 马耀辉,徐国祺,黄鑫. 新型IPBC/β-环糊精复合防霉剂的研制. 北京林业大学学报. 2025(01): 126-134 . 本站查看
    2. 黄鑫,徐国祺,马耀辉. 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂. 北京林业大学学报. 2025(01): 116-125 . 本站查看
    3. 张景朋,蒋明亮,张斌. 嘧菌酯高效液相色谱分析方法及防腐材抗流失性能研究. 浙江农林大学学报. 2025(01): 185-192 .
    4. 邢宏楠. 丙烯酸酯阻尼乳液聚合水性车用涂料制备及粘附性能研究. 粘接. 2024(08): 13-16 .
    5. 马星霞,乔云飞,黎冬青,王艳华. 古建筑木构件生物危害预防性保护体系框架构建. 木材科学与技术. 2023(01): 83-90 .
    6. 孙振炳,李晓宝,姚曜,李晓平,孙雷,Jeffrey J.Morrell. 果胶预处理对杉木耐久性的影响. 西部林业科学. 2022(01): 84-88 .
    7. 张景朋,张卿硕,吴玉章,蒋明亮. 防腐木材中戊唑醇和丙环唑的高效液相色谱分析方法. 林业工程学报. 2022(05): 99-105 .
    8. 王磊,赵晓琪,王雅梅. 环境响应型纳米载体材料的缓控释特性及其木材保护领域应用前景. 林产工业. 2022(09): 19-24 .
    9. 张景朋,张卿硕,韩利平,蒋明亮. 高效液相色谱测定防腐木中IPBC含量的方法研究. 木材科学与技术. 2022(05): 71-77 .

    Other cited types(6)

Catalog

    Article views (1924) PDF downloads (101) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return