• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Huang Mengyi, Zhao Jiaqiang, Shi Juan. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64-71. DOI: 10.12171/j.1000-1522.20190053
Citation: Huang Mengyi, Zhao Jiaqiang, Shi Juan. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64-71. DOI: 10.12171/j.1000-1522.20190053

Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt

More Information
  • Received Date: January 19, 2019
  • Revised Date: April 06, 2020
  • Available Online: September 23, 2020
  • Published Date: December 13, 2020
  •   Objective  Leptocybe invasa is an invasive wasp common to China, which was first introduced into the Guangxi Province of southern China in 2007. It had endangered the eucalyptus plantations in southern China within just a few years, causing serious economic and ecological losses. This study employed the MaxEnt latest prediction model, a novel maximum entropy model to firstly analyze this invasive wasp distribution in China under current and future climate conditions. The results will be helpful to understand the range dynamic change of L. invasa under the influence of temperature change.
      Method  Data were collected on the current locations of this wasp, along with the damage incurred to eucalyptus. These data were used to create a forecast model for the present and future trends of the favorable habitat under the RCP 8.5 climate scenario. And model will test the accuracy of simulation results.
      Result  The test omission rate of simulation results was basically consistent with that of theory. The value of AUC was 0.898 while a standard deviation of 0.022. The verification results showed that the test and training data were not independent and the constructed model was highly reliable and accurate. MaxEnt model predicted that the potential distribution for L. invasa was mainly concentrated at the south of the Yangtze River in the provinces of Fujian, Guangdong, Guangxi and Hainan. The RCP 8.5 scenario predicted a small-scale potential reduction of moderately favorable habitat, but the whole favorable habitat increased.
      Conclusion  Based on the analysis of the predicted scope of this invasive wasp distribution, this study has established the grounds for the effective formulation of preventive and control measures for the monitoring of L. invasa and the prediction of its possible colonies, which is a significant theoretical reference on its own.
  • [1]
    Mendel Z, Protasov A, Fisher N, et al. Taxonomy and biology of Leptocybe invasa gen. & sp. n. (Hymenoptera: Eulophidae), an invasive gall inducer on Eucalyptus[J]. Australian Journal of Entomology, 2004, 43: 51−63.
    [2]
    Udagedara S K, Karumaratne I P. Biology, damage and parasitoids of the Eucalyptus gall wasp, Leptocybe invasa (Hymenoptera: Eulophidae), infesting Eucalyptus camaldulensis (Myrtaceae) in Maragamuwa plantation, Sri Lanka[J]. International Journal of Tropical Insect Science, 2014, 34(3): 179−189.
    [3]
    Vanegas-Rico J M, Lomeli-Flores J R, Guez-Leyva E R, et al. First record of eucalyptus gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) in Mexico[J]. Revista Mexicana de Biodiversidad, 2015, 86: 1095−1098.
    [4]
    谢耀坚. 我国桉树种质资源现状及育种目标探讨[J]. 桉树科技, 2012, 29(2):33−39. doi: 10.3969/j.issn.1674-3172.2012.02.007

    Xie Y J. Study on Eucalyptus selection objectives and current situation of genetic resources in China[J]. Eucalypt Science & Technology, 2012, 29(2): 33−39. doi: 10.3969/j.issn.1674-3172.2012.02.007
    [5]
    郑嘉琪, 陈少雄. 我国桉树用途概述[J]. 桉树科技, 2017, 34(3):42−46. doi: 10.3969/j.issn.1674-3172.2017.03.008

    Zheng J Q, Chen S X. A discussion on utilization of eucalyptus in China[J]. Eucalypt Science & Technology, 2017, 34(3): 42−46. doi: 10.3969/j.issn.1674-3172.2017.03.008
    [6]
    朱方丽, 邱宝利, 任顺祥. 桉树枝瘿姬小蜂连续世代种群生命表[J]. 生态学报, 2013, 33(1):97−102.

    Zhu F L, Qiu B L, Ren S X. The continuous life-table of Leptocybe invasa[J]. Acta Ecologica Sinica, 2013, 33(1): 97−102.
    [7]
    魏初奖, 张华峰, 陈德兰, 等. 福建省桉树枝瘿姬小蜂发生现状与防控对策[J]. 中国森林病虫, 2017, 36(4):44−46. doi: 10.3969/j.issn.1671-0886.2017.04.012

    Wei C J, Zhang H F, Chen D L, et al. Hazard situation and control measures of Leptocybe invasa in Fujian Province[J]. Forest Pest and Disease, 2017, 36(4): 44−46. doi: 10.3969/j.issn.1671-0886.2017.04.012
    [8]
    韦建林, 何震, 梁一萍, 等. 桉树枝瘿姬小蜂危害林巨园桉DH201-2近自然生长研究[J]. 农业研究与应用, 2013(5):1−4. doi: 10.3969/j.issn.2095-0764.2013.05.001

    Wei J L, He Z, Liang Y P, et al. Studies on the damage of Leptocybe invasa to near-natural growth of (Eucalyptus grandis × E. tereticornis) DH201-2[J]. Agricultural Research and Application, 2013(5): 1−4. doi: 10.3969/j.issn.2095-0764.2013.05.001
    [9]
    武海卫, 贾薪玉, 黄焕华, 等. 五种桉树对桉树枝瘿姬小蜂的抗性研究[J]. 环境昆虫学报, 2009, 31(2):132−136. doi: 10.3969/j.issn.1674-0858.2009.02.006

    Wu H W, Jia X Y, Huang H H, et al. Studies on the resistance of five Eucalyptus species to Leptocybe invasa Fisher & La Salle[J]. Journal of Environmental Entomology, 2009, 31(2): 132−136. doi: 10.3969/j.issn.1674-0858.2009.02.006
    [10]
    张开存, 李晓艳, 朱琼, 等. 云南东川桉树枝瘿姬小蜂危害调查[J]. 安徽农业科学, 2017, 45(8):163−166. doi: 10.3969/j.issn.0517-6611.2017.08.055

    Zhang K C, Li X Y, Zhu Q, et al. Damage Investigation of Leptocybe invasa Fisher & La Salle in Dongchuan District in Yunnan Province[J]. Journal of Anhui Agricultural Sciences, 2017, 45(8): 163−166. doi: 10.3969/j.issn.0517-6611.2017.08.055
    [11]
    常润磊, 周旭东. 我国桉树枝瘿姬小蜂研究现状[J]. 桉树科技, 2010, 27(1):75−78. doi: 10.3969/j.issn.1674-3172.2010.01.014

    Chang R L, Zhou X D. Research status of Leptocybe invasa Fisher & La Salle in China[J]. Eucalypt Science & Technology, 2010, 27(1): 75−78. doi: 10.3969/j.issn.1674-3172.2010.01.014
    [12]
    Pachauri R K, Meyer L A. Climate change, fifth assessment synthesis report [R/OL]. Geneva: IPCC, 2014 [2019−02−13]. http://www.ipcc.ch/report/ar5/syr/.
    [13]
    Chejara V, Kriticos D, Kristiansen P, et al. The current and future potential geographical distribution of Hyparrhenia hirta[J]. Weed Research, 2010, 50(2): 174−184.
    [14]
    Phillips S J, DudÍk M. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31: 161−170.
    [15]
    Phillips S J, Robert P A, DudÍk M, et al. Opening the black box: an open-source release of MaxEnt[J]. Ecography, 2017, 40: 887−893.
    [16]
    Guevara L, Gerstner B E, Kass J M, et al. Toward ecologically realistic predictions of species distributions: a cross-time example From tropical montane cloud forests[J]. Global Change Biology, 2018, 24: 1511−1522.
    [17]
    Riahi K, Rao S, Krey V, et al. RCP 8.5-A scenario of comparatively high greenhouse gas emissions[J]. Climatic Change, 2011, 109: 33−57.
    [18]
    Tebaldi C, Wehner M F. Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5[J]. Climatic Change, 2018, 146: 349−361.
    [19]
    Zhao Z C, Luo Y, Wang S W, et al. Science issues on global warming[J]. Journal of Meteorology and Environment, 2015, 31(1): 1−5.
    [20]
    Bao J, Feng J, Wang Y. Dynamical downscaling simulation and future projection of precipitation over China[J]. Journal of Geophysical Research Atmospheres, 2015, 120(16): 8227−8243.
    [21]
    Sa E, Martins H, Ferreira J, et al. Climate change and pollutant emissions impacts on air quality in 2050 over Portugal[J]. Atmospheric Environment, 2016, 131: 209−224.
    [22]
    朱耿平, 刘强, 高玉葆. 提高生态位模型转移能力来模拟入侵物种的潜在分布[J]. 生物多样性, 2014, 22(2):223−230.

    Zhu G P, Liu Q, Gao Y B. Improving ecological niche model transferability to predict the potential distribution of invasive exotic species[J]. Biodiversity Science, 2014, 22(2): 223−230.
    [23]
    Zhong Q, Zhang J E, Ditommaso A, et al. Predicting invasions of Wedelia trilobata (L.) Hitchc. with MaxEnt and GARP models[J]. Journal of Plant Research, 2015, 128: 763−775.
    [24]
    李志辉, 杨民胜, 陈少雄, 等. 桉树引种栽培区区划研究[J]. 中南林学院学报, 2000, 20(3):1−10.

    Li Z H, Yang M S, Chen S X, et al. Study on regionalization for Eucalyptus introduction cultural area in China[J]. Journal of Central South Forestry University, 2000, 20(3): 1−10.
    [25]
    邓利和, 王丕振. 海南省桉树种质资源分布调查及分析[J]. 热带林业, 2018, 46(2):47−51. doi: 10.3969/j.issn.1672-0938.2018.02.013

    Deng L H, Wang P Z. Investigation and analysis on distribution of germplasm resources of Eucalyptus sinensis in Hainan Province[J]. Tropical Forestry, 2018, 46(2): 47−51. doi: 10.3969/j.issn.1672-0938.2018.02.013
    [26]
    Huang M Y, Ge X Z, Shi H L, et al. Prediction of current and future potential distributions of the Eucalyptus pest Leptocybe invasa (Hymenoptera: Eulophidae) in China using the CLIMEX model[J]. Pest Managemant Science, 2019, 75(11): 2958−2968.
    [27]
    翟薇, 李肖霞. BCC_CSM1.1全球-模式中极端气温变化的归因分析[J]. 气象与环境科学, 2014, 37(4):25−32. doi: 10.3969/j.issn.1673-7148.2014.04.004

    Zhai W, Li X X. Attribution analysis of the extreme temperature change in BCC_CSM1.1 global pattern[J]. Meteorological and Environmental Sciences, 2014, 37(4): 25−32. doi: 10.3969/j.issn.1673-7148.2014.04.004
    [28]
    周鑫, 李清泉, 孙秀博, 等. BCC_CSM1.1模式对我国气温的模拟和预估[J]. 应用气象学报, 2014, 25(1):95−106. doi: 10.11898/1001-7313.20140110

    Zhou X, Li Q Q, Sun X B, et al. Simulation and projection of temperature in China with BCC_CSM1.1 model[J]. Journal of Applied Meteorological Science, 2014, 25(1): 95−106. doi: 10.11898/1001-7313.20140110
  • Related Articles

    [1]Feng Xuejing, Ma Ling, Yang Shuang, Bo Wenhao, Chen Xuexun, Pang Xiaoming. Construction of genetic transformation system of ‘Jingzao 39’ callus[J]. Journal of Beijing Forestry University, 2024, 46(10): 74-80. DOI: 10.12171/j.1000-1522.20240055
    [2]PANG Hong-dong, XIANG Lin, ZHAO Kai-ge, LI Xiang, YANG Nan, CHEN Long-qing. Genetic transformation and functional characterization of Chimonanthus praecox SAMT gene in tobacco[J]. Journal of Beijing Forestry University, 2014, 36(5): 117-122. DOI: 10.13332/j.cnki.jbfu.2014.05.019
    [3]LI Yan, ZHAO De-gang. Ipt gene promoting shoot regeneration in genetic transformation of Eucommia ulmoides Oliv[J]. Journal of Beijing Forestry University, 2011, 33(6): 90-93.
    [4]ZENG Xiao-fang, ZHAO De-gang. Factors affecting transformation of Zanthoxylum piperitum DC. var. inerme Makino via Agrobacterium tumefaciens.[J]. Journal of Beijing Forestry University, 2011, 33(6): 80-85.
    [5]ZHAO Ling-li, SHI Shao-chuan, SUN Jia-qi, ZHANG Qi-xiang, GAO Yi-ke. Transformation of ground-cover Chrysanthemum with HsfA2 gene isolated from Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2011, 33(5): 97-102.
    [6]LONG Cui, PANG Xiao-ming, CAO Guan-lin, LIU Ying, ZHANG Zhi-yi. A study on the efficient protocol for transforming MdSPDS1 gene into Populus tomentosa Carr.[J]. Journal of Beijing Forestry University, 2010, 32(5): 21-26.
    [7]YU Lai, AN Xin-min, CAO Guan-lin, CHEN Zhong, ZHANG Zhi-yi. Genetic transformation of Populus tomentosa Carr. with sterility construct of PtAP3[J]. Journal of Beijing Forestry University, 2010, 32(5): 15-20.
    [8]QIN Ai-guang, LUO Xiao-fang. Transformation of transcription factor DREB1C gene into the fast-growing black locust mediated with Agrobacterium tumefaciens[J]. Journal of Beijing Forestry University, 2007, 29(6): 29-34. DOI: 10.13332/j.1000-1522.2007.06.011
    [9]LI Hui, CHEN Xiao-yang, LI Yun, LI Wei, DING Xia. Optimization of antibiotic concentration in genetic transformation of Populus alba[J]. Journal of Beijing Forestry University, 2005, 27(5): 118-121.
    [10]GAO Li-ping, BAO Man-zhu. Optimization of Agrobacterium-mediated transformation of Rosa hybrida[J]. Journal of Beijing Forestry University, 2005, 27(4): 60-64.
  • Cited by

    Periodical cited type(8)

    1. 罗茂,关志华,颜幼春,柴莹莹,刘佳琪,张佳敏,王忠红. 模拟根际生境下青甘韭生长与品质的差异分析. 高原农业. 2025(01): 65-72+132 .
    2. 黄小辉,吴焦焦,王玉书,冯大兰,孙向阳. 不同供氮水平的核桃幼苗生长及叶绿素荧光特性. 南京林业大学学报(自然科学版). 2022(02): 119-126 .
    3. 郑伟,师筝,龙美,廖允成. 黄绿叶突变体冀麦5265yg的光合生理特性分析. 中国农业科学. 2021(21): 4539-4551 .
    4. 王佳敏,宋海燕,陈金艺,张静,李素慧,陶建平,刘锦春. 多年生黑麦草对干旱胁迫下喀斯特异质生境的生长响应策略. 生态学报. 2020(13): 4566-4572 .
    5. 王生云,陶永明,司剑华. 不同配方轻基质对鳞皮云杉生长及光合参数的影响. 浙江林业科技. 2019(02): 50-55 .
    6. 乐佳兴,田秋玲,吴焦焦,高岚,张文,刘芸. 无患子幼苗的生长和光合特性对重庆低山丘陵区不同生境的响应. 北京林业大学学报. 2019(06): 75-85 . 本站查看
    7. 戴前莉,黄小辉,黄馨,唐龙波,朱恒星. 不同生境条件下凤丹生长及光合特性比较. 西南大学学报(自然科学版). 2018(09): 53-58 .
    8. 陶永明,司剑华. 不同轻基质配方对川西云杉幼苗生长的影响. 浙江林业科技. 2017(04): 66-70 .

    Other cited types(5)

Catalog

    Article views (1356) PDF downloads (75) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return