Citation: | Jiang Ning, Mu Changcheng, Han Lidong, Shen Zhongqi. Impact of harvesting on carbon source/sink of Alnus sibirica var. hirsuta swamps in Daxing’anling Mountains discontinuous permafrost region of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 1-13. DOI: 10.12171/j.1000-1522.20190074 |
[1] |
Schuur E A G, Bockheim J, Canadell J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. AIBS Bulletin, 2008, 58(8): 701−714.
|
[2] |
Tarnocai C, Canadell J G, Schuur E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23(2): 1−11.
|
[3] |
Abbott B W, Jones J B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra[J]. Global Change Biology, 2015, 21(12): 4570−4587. doi: 10.1111/gcb.13069
|
[4] |
Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440: 165−173. doi: 10.1038/nature04514
|
[5] |
Hinzman L D, Bettez N D, Bolton W R, et al. Evidence and Implications of recent climate change in northern Alaska and other Arctic regions[J]. Climatic Change, 2005, 72(3): 251−298. doi: 10.1007/s10584-005-5352-2
|
[6] |
Kurylyk B L, Hayashi M, Quinton W L, et al. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow[J]. Water Resources Research, 2016, 52(2): 1286−1305. doi: 10.1002/2015WR018057
|
[7] |
Walvoord M A, Kurylyk B L. Hydrologic impacts of thawing permafrost:a review[J]. Vadose Zone Journal, 2016, 15(6): 14−15.
|
[8] |
Baltzer J L, Veness T, Chasmer L E, et al. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss[J]. Global Change Biology, 2014, 20(3): 824−834. doi: 10.1111/gcb.12349
|
[9] |
Jansson J K, Taş N. The microbial ecology of permafrost[J]. Nature Reviews Microbiology, 2014, 12(6): 414−425. doi: 10.1038/nrmicro3262
|
[10] |
Bockheim J, Vieira G, Ramos M, et al. Climate warming and permafrost dynamics in the Antarctic Peninsula region[J]. Global and Planetary Change, 2013, 100: 215−223. doi: 10.1016/j.gloplacha.2012.10.018
|
[11] |
Lee H, Schuur E A G, Inglett K S, et al. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate[J]. Global Change Biology, 2012, 18(2): 515−527. doi: 10.1111/j.1365-2486.2011.02519.x
|
[12] |
Natali S M, Schuur E A G, Mauritz M, et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(3): 525−537. doi: 10.1002/2014JG002872
|
[13] |
Schuur E A G, McGuire A D, Schädel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520: 171−179. doi: 10.1038/nature14338
|
[14] |
Voigt C, Marushchak M E, Mastepanov M, et al. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw[J]. Global Change Biology, 2019, 25: 1746−1764. doi: 10.1111/gcb.14574
|
[15] |
Turetsky M R, Wieder R K, Vitt D H, et al. The disappearance of relict permafrost in boreal north America: effects on peatland carbon storage and fluxes[J]. Global Change Biology, 2007, 13(9): 1922−1934. doi: 10.1111/j.1365-2486.2007.01381.x
|
[16] |
Schuur E A G, Vogel J G, Crummer K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009, 459: 556−559. doi: 10.1038/nature08031
|
[17] |
Abbott B W, Jones J B, Schuur E A G, et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment[J/OL]. Environmental Research Letters, 2016, 11(3): 034014 (2016−03−07) [2018−11−18]. https://doi.org/10.1088/1748-9326/11/3/034014.
|
[18] |
Vestin P, Mölder M, Sundqvist E, et al. Significant emissions of methane and nitrous oxide following clear-cutting of a boreal forest stand[C]. San Francisco: AGU Fall Meeting, 2011.
|
[19] |
Kubin E, Kemppainen L. Effect of clearcutting of boreal spruce forest on air and soil temperature conditions[J]. Acta Forestalia Fennica, 1991, 225(225): 1−41.
|
[20] |
Sun G, Riekerk H, Kornhak L V. Ground-water-table rise after forest harvesting on cypress-pine flatwoods in Florida[J]. Wetlands, 2000, 20(1): 101−112. doi: 10.1672/0277-5212(2000)020[0101:GWTRAF]2.0.CO;2
|
[21] |
Zerva A, Mencuccini M. Short-term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation[J]. Soil Biology and Biochemistry, 2005, 37(11): 2025−2036. doi: 10.1016/j.soilbio.2005.03.004
|
[22] |
郝利, 牟长城, 常怡慧, 等. 采伐对小兴安岭森林沼泽非生长季土壤温室气体排放的影响[J]. 应用生态学报, 2019, 30(5):1713−1725.
Hao L, Mu C C, Chang Y H, et al. Effects of harvest on greenhouse gas emissions from forested swamp during non-growing season in Xiaoxing’an Mountains of China[J]. Chinese Journal Applied Ecology, 2019, 30(5): 1713−1725.
|
[23] |
Iwahana G, Machimura T, Kobayashi Y, et al. Influence of forest clear-cutting on the thermal and hydrological regime of the active layer near Yakutsk, eastern Siberia[J/OL]. Journal of Geophysical Research: Biogeosciences, 2005, 110: G02004 (2005−10−26) [2018−12−16]. https://doi.org/10.1029/2005JG000039.
|
[24] |
Fedorov A N, Iwahana G, Konstantinov P Y, et al. Variability of permafrost and landscape conditions following clear cutting of larch forest in Central Yakutia[J]. Permafrost & Periglacial Processes, 2016, 28(1): 331−338.
|
[25] |
牟长城, 吴云霞, 李婉姝, 等. 采伐对小兴安岭落叶松-泥炭藓沼泽温室气体排放的影响[J]. 应用生态学报, 2010, 21(2):287−293.
Mu C C, Wu Y X, Li W S, et al. Effects of forest cutting on greenhouse gas emissions from Larix gmelini-sphagnum swamps in Lesser Xing’ an Mountains of Heilongjiang, China[J]. Chinese Journal Applied Ecology, 2010, 21(2): 287−293.
|
[26] |
孙晓新, 牟长城, 宋长春, 等. 采伐对小兴安岭森林沼泽甲烷通量的影响[J]. 土壤通报, 2011, 42(1):190−194.
Sun X X, Mu C C, Song C C, et al. Impact of harvesting on methane flux in Xiaoxing’an Mountains forest swamp[J]. Chinese Journal of Soil Science, 2011, 42(1): 190−194.
|
[27] |
刘霞, 牟长城, 李婉姝, 等. 小兴安岭毛赤杨样地CH4、N2O排放规律及其对人为干扰的响应[J]. 环境科学学报, 2009, 29(12):2642−2650. doi: 10.3321/j.issn:0253-2468.2009.12.024
Liu X, Mu C C, Li W S, et al. Emission of CH4 and N2O from Alnus sibirica swamps and the response to human disturbance the Xiaoxing’an Mountains[J]. Acta Scientiae Circumtantiae, 2009, 29(12): 2642−2650. doi: 10.3321/j.issn:0253-2468.2009.12.024
|
[28] |
Huttunen J T, Nykänen H, Martikainen P J, et al. Fluxes of nitrous oxide and methane from drained peatlands following forest clear-felling in southern Finland[J]. Plant & Soil, 2003, 255(2): 457−462.
|
[29] |
Gao S, Chen J, Tang Y, et al. Ecosystem carbon (CO2 and CH4) fluxes of a Populus dettoides plantation in subtropical China during and post clear-cutting[J]. Forest Ecology and Management, 2015, 357: 206−219. doi: 10.1016/j.foreco.2015.08.026
|
[30] |
Olchev A, Kurbatova J, Mukhartova J, et al. The effect of deforestation and land-use changes on CO2 and H2O exchange between land surface and the atmosphere in the Upper Volga Area in Russia[C]. Berlin: EGU General Assembly Conference Abstracts, 2016.
|
[31] |
Peckham S D, Gower S T. Simulated long-term effects of harvest and biomass residue removal on soil carbon and nitrogen content and productivity for two Upper Great Lakes forest ecosystems[J]. Global Change Biology Bioenergy, 2011, 3(2): 135−147. doi: 10.1111/j.1757-1707.2010.01067.x
|
[32] |
Powers R F, Scott D A, Sanchez F G, et al. The North American long-term soil productivity experiment: findings from the first decade of research[J]. Forest Ecology and Management, 2005, 220(1−3): 31−50. doi: 10.1016/j.foreco.2005.08.003
|
[33] |
Dawnm B, Kena E, Stephenb H, et al. The effects of partial harvest on the understory vegetation of southern Ontario woodlands[J]. Forest Ecology & Management, 2008, 255(7): 2204−2212.
|
[34] |
Mu C, Lu H, Wang B, et al. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii: Carex schmidtii forested wetlands in Daxing’anling, northeast China[J]. Forest Ecology and Management, 2013, 293: 140−148. doi: 10.1016/j.foreco.2012.12.031
|
[35] |
Connell M J, Raison R J, Jenkins P. Effects of thinning and coppice control on stand productivity and structure in a silvertop ash (Eucalyptus sieberi L. Johnson) forest[J]. Australian Forestry, 2004, 67(1): 30−38. doi: 10.1080/00049158.2004.10676203
|
[36] |
Scott N A, Hollinger D, Davidson E A, et al. Changes in the net carbon balance following a shelterwood harvest at Howland Forest in central Maine seven years after harvest[C]. San Francisco, California, United States: AGU Fall Meeting Abstracts, 2009.
|
[37] |
Raymond C L, Healey S, Peduzzi A, et al. Representative regional models of post-disturbance forest carbon accumulation: integrating inventory data and a growth and yield model[J]. Forest Ecology and Management, 2015, 336: 21−34. doi: 10.1016/j.foreco.2014.09.038
|
[38] |
Amiro B D, Barr A G, Black T A, et al. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada[J]. Agricultural and forest meteorology, 2006, 136(3−4): 237−251. doi: 10.1016/j.agrformet.2004.11.012
|
[39] |
Zha T, Barr A G, Black T A, et al. Carbon sequestration in boreal jack pine stands following harvesting[J]. Global Change Biology, 2009, 15(6): 1475−1487. doi: 10.1111/j.1365-2486.2008.01817.x
|
[40] |
Fredeen A L, Waughtal J D, Pypker T G. When do replanted sub-boreal clearcuts become net sinks for CO2?[J]. Forest Ecology and Management, 2007, 239(1−3): 210−216. doi: 10.1016/j.foreco.2006.12.011
|
[41] |
Clark K L, Gholz H L, Castro M S. Carbon dynamics along a chronosequence of slash pine plantations in north Florida[J]. Ecological Applications, 2004, 14(4): 1154−1171. doi: 10.1890/02-5391
|
[42] |
Aguilos M, Takagi K, Liang N, et al. Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest[J]. Agricultural and Forest Meteorology, 2014, 197: 26−39. doi: 10.1016/j.agrformet.2014.06.002
|
[43] |
Howard E A, Gower S T, Foley J A, et al. Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada[J]. Global Change Biology, 2004, 10(8): 1267−1284. doi: 10.1111/j.1529-8817.2003.00804.x
|
[44] |
Goulden M L, McMillan A M S, Winston G C, et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession[J]. Global Change Biology, 2011, 17(2): 855−871. doi: 10.1111/j.1365-2486.2010.02274.x
|
[45] |
Humphreys E R, Black T A, Morgenstern K, et al. Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting[J]. Agricultural and Forest Meteorology, 2006, 140(1−4): 6−22. doi: 10.1016/j.agrformet.2006.03.018
|
[46] |
郭东信, 王绍令, 鲁国威, 等. 东北大小兴安岭多年冻土分区[J]. 冰川冻土, 1981, 3(3):1−9.
Guo D X, Wang S L, Lu G W, et al. Zonation of permafrost in the Da-Xiao Xing anling Mountains in northeastern China[J]. Journal of Glaciology and Geocryology, 1981, 3(3): 1−9.
|
[47] |
Jin H, Yu Q, Lü L, et al. Degradation of permafrost in the Xing’anling Mountains, northeastern China[J]. Permafrost and Periglacial Processes, 2007, 18(3): 245−258. doi: 10.1002/ppp.589
|
[48] |
Liu X, Guo Y, Hu H, et al. Dynamics and controls of CO2 and CH4 emissions in the wetland of a montane permafrost region, northeast China[J]. Atmospheric Environment, 2015, 122: 454−462. doi: 10.1016/j.atmosenv.2015.10.007
|
[49] |
Miao Y, Song C, Sun L, et al. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation[J]. Biogeosciences, 2012, 9(11): 4455−4464. doi: 10.5194/bg-9-4455-2012
|
[50] |
王娇月, 韩耀鹏, 宋长春, 等. 冻融作用对大兴安岭多年冻土区泥炭地土壤有机碳矿化的影响研究[J]. 气候变化研究进展, 2018, 14(1):59−66.
Wang J Y, Han Y P, Song C C, et al. Effects of freezing-thawing cycles on soil organic carbon mineralization in the peatland ecosystems from continuous permafrost zone, Great Hinggan Mountains[J]. Climate Change Reseach, 2018, 14(1): 59−66.
|
[51] |
蒋磊, 宋艳宇, 宋长春, 等. 大兴安岭冻土区泥炭地土壤碳、氮含量和酶活性室内模拟研究[J]. 湿地科学, 2018, 16(3):294−302.
Jiang L, Song Y Y, Song C C, et al. Indoor simulation study on carbon and nitrogen contents and enzyme activities of soils in permafrost region in Greater Khingan Mountains[J]. Wetland Science, 2018, 16(3): 294−302.
|
[52] |
牟长城, 王彪, 卢慧翠, 等. 大兴安岭天然沼泽湿地生态系统碳储量[J]. 生态学报, 2013, 33(16):4956−4965. doi: 10.5846/stxb201212271884
Mu C C, Wang B, Lu H C, et al. Carbon storage of natural wetland ecosystem in Daxing’anling of China[J]. Acta Ecologica Sinica, 2013, 33(16): 4956−4965. doi: 10.5846/stxb201212271884
|
[53] |
Harden J W, Koven C D, Ping C L, et al. Field information links permafrost carbon to physical vulnerabilities of thawing[J]. Geophysical Research Letters, 2012, 39(15): 1−6.
|
[54] |
Alm J, Schulman L, Walden J, et al. Carbon balance of a boreal bog during a year with an exceptionally dry summer[J]. Ecology, 1999, 80(1): 161−174. doi: 10.1890/0012-9658(1999)080[0161:CBOABB]2.0.CO;2
|
[55] |
Kelley C A, Martens C S, Ussler Ⅲ W. Methane dynamics across a tidally flooded riverbank margin[J]. Limnology and Oceanography, 1995, 40(6): 1112−1129. doi: 10.4319/lo.1995.40.6.1112
|
[56] |
吴艺雪, 杨效东, 余广彬. 两种热带雨林土壤微生物生物量碳季节动态及其影响因素[J]. 生态环境学报, 2009, 18(2):658−663. doi: 10.3969/j.issn.1674-5906.2009.02.049
Wu Y X, Yang X D, Xu G B. Seasonal fluctuation of soil microbial biomass carbon and its influence factors in two types of tropical rainforests[J]. Ecology and Environmental Sciences, 2009, 18(2): 658−663. doi: 10.3969/j.issn.1674-5906.2009.02.049
|
[57] |
Ström L, Christensen T R. Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland[J]. Soil Biology & Biochemistry, 2007, 39(7): 1689−1698.
|
[58] |
Albert M R, Hardy J P. Ventilation experiments in seasonal snow cover[J]. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 1995, 228: 41−50.
|
[59] |
Leon E, Vargas R, Bullock S, et al. Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem[J]. Soil Biology and Biochemistry, 2014, 77: 12−21. doi: 10.1016/j.soilbio.2014.05.029
|
[60] |
Sollins P, Spycher G, Glassman C A. Net nitrogen mineralization from light-and heavy-fraction forest soil organic matter[J]. Soil Biology and Biochemistry, 1984, 16(1): 31−37. doi: 10.1016/0038-0717(84)90122-6
|
[61] |
N.C. 布雷迪. 土壤的本质与性状[M]. 北京: 科学出版社, 1982.
Brady N C. The nature and properties of soils[M]. Beijing: Science Press, 1982.
|
[62] |
Mallik A U, Newaz S, Mackereth R W, et al. Geomorphic changes of headwater systems 3-23 years after forest harvesting by clearcutting[J]. Ecosphere, 2011, 2(4): 1−14.
|
1. |
卢翠香,兰俊,陈健波,吴永富,邓紫宇,周维. 尾巨桉树轮异常结构的解剖学分析. 西南大学学报(自然科学版). 2019(04): 72-77 .
![]() | |
2. |
易敏,赖猛,张露,陈伏生,胡松竹. 人工林刨花楠木材主要特性的径向变异及其对气象因子的响应. 应用生态学报. 2018(11): 3677-3684 .
![]() |