• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Jiang Ning, Mu Changcheng, Han Lidong, Shen Zhongqi. Impact of harvesting on carbon source/sink of Alnus sibirica var. hirsuta swamps in Daxing’anling Mountains discontinuous permafrost region of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 1-13. DOI: 10.12171/j.1000-1522.20190074
Citation: Jiang Ning, Mu Changcheng, Han Lidong, Shen Zhongqi. Impact of harvesting on carbon source/sink of Alnus sibirica var. hirsuta swamps in Daxing’anling Mountains discontinuous permafrost region of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 1-13. DOI: 10.12171/j.1000-1522.20190074

Impact of harvesting on carbon source/sink of Alnus sibirica var. hirsuta swamps in Daxing’anling Mountains discontinuous permafrost region of northeastern China

More Information
  • Received Date: April 24, 2019
  • Revised Date: July 28, 2019
  • Available Online: March 08, 2020
  • Published Date: March 30, 2020
  • ObjectiveDegradation of permafrost caused by climate warming will increase greenhouse gas emissions from wetlands above it, yet it is still unclear that how harvest disturbance affects greenhouse gas emissions from wetlands on frozen soil.
    MethodAnnual carbon emission fluxes (ACE) (CO2 and CH4), the net primary productivity (NPP) and annual net carbon sequestration of vegetation (VNCS) of four different harvest treatments (control-D, low intensity selective cutting 15%-Qz, high intensity selective cutting 45%-Zz and clear cutting-J) of Alnus sibirica var. hirsuta swamp were measured synchronously using the static chamber gas chromatography method and the relative growth equation, as well as related environmental factors (soil temperature, water level, thawing depth, soil carbon and nitrogen content, etc.) at Nanwenghe in Daxing’anling discontinuous permafrost region of northeastern China, in order to reveal the influence of harvesting disturbance on the carbon source/sink of the cold temperate forested wetlands according to the balance of net carbon budget of the ecosystem.
    Result(1) Zz and J made the mean annual fluxes of CH4 (0.008−0.019 mg/(m2·h)) significantly lower than D by 52.6%−57.9% (P < 0.05), Qz is close to the D (− 10.5%, P > 0.05), and their seasonal dynamic trends took on two types (D, Qz bimodal-low emission; Zz and J bimodal-low absorption); (2) Qz, Zz and J all made the mean annual fluxes of CO2 (103.69−133.65 mg/(m2·h)) significantly decreased by 14.4%−22.4% (P < 0.05) compared with control, their seasonal dynamic trends also existed two types (D, Qz unimodal type-peak at late summer; Zz and J unimodal type-peak advance to midsummer); (3) The soil CH4 flux was controlled by soil temperature, water level and snow thickness; soil CO2 flux was controlled by soil temperature, soil organic carbon content and freezing depth synthetically; (4) Both NPP (5.07−8.83 t/(ha·year)) and VNCS (2.10−3.83 t/(ha·year)) showed a declining trend with increasing harvesting intensity, among them, NPP and VNCS of Qz were similar to those of D, Zz and J, made NPP and VNCS significantly decreased by13.7%−36.9% and 14.2%−43.5% compared with control (P < 0.05), respectively, and those of J were significantly lower than that of Zz by 26.9% and 34.2% (P < 0.05); (5) Net ecosystem carbon budget (− 0.42−1.30 t/(ha·year)) of four treatments existed significant differences. D, Qz and Zz were all carbon sinks, and the sink strength of Qz was significantly higher than that of D and Zz by 1.6 and 1.2 times (P < 0.05), but J had been converted into carbon source (− 0.42 t/(ha·year), P < 0.05).
    ConclusionTherefore, after eight years of harvesting, Alnus sibirica var. hirsuta swamp had restored the carbon sink function at selective cutting site, while it still maintained the carbon source at clear cutting site in the cold temperate discontinuous permafrost region, so selective cutting should be adopted in the management of wetland carbon sinks and to avoid clear cutting.
  • [1]
    Schuur E A G, Bockheim J, Canadell J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. AIBS Bulletin, 2008, 58(8): 701−714.
    [2]
    Tarnocai C, Canadell J G, Schuur E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23(2): 1−11.
    [3]
    Abbott B W, Jones J B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra[J]. Global Change Biology, 2015, 21(12): 4570−4587. doi: 10.1111/gcb.13069
    [4]
    Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440: 165−173. doi: 10.1038/nature04514
    [5]
    Hinzman L D, Bettez N D, Bolton W R, et al. Evidence and Implications of recent climate change in northern Alaska and other Arctic regions[J]. Climatic Change, 2005, 72(3): 251−298. doi: 10.1007/s10584-005-5352-2
    [6]
    Kurylyk B L, Hayashi M, Quinton W L, et al. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow[J]. Water Resources Research, 2016, 52(2): 1286−1305. doi: 10.1002/2015WR018057
    [7]
    Walvoord M A, Kurylyk B L. Hydrologic impacts of thawing permafrost:a review[J]. Vadose Zone Journal, 2016, 15(6): 14−15.
    [8]
    Baltzer J L, Veness T, Chasmer L E, et al. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss[J]. Global Change Biology, 2014, 20(3): 824−834. doi: 10.1111/gcb.12349
    [9]
    Jansson J K, Taş N. The microbial ecology of permafrost[J]. Nature Reviews Microbiology, 2014, 12(6): 414−425. doi: 10.1038/nrmicro3262
    [10]
    Bockheim J, Vieira G, Ramos M, et al. Climate warming and permafrost dynamics in the Antarctic Peninsula region[J]. Global and Planetary Change, 2013, 100: 215−223. doi: 10.1016/j.gloplacha.2012.10.018
    [11]
    Lee H, Schuur E A G, Inglett K S, et al. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate[J]. Global Change Biology, 2012, 18(2): 515−527. doi: 10.1111/j.1365-2486.2011.02519.x
    [12]
    Natali S M, Schuur E A G, Mauritz M, et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(3): 525−537. doi: 10.1002/2014JG002872
    [13]
    Schuur E A G, McGuire A D, Schädel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520: 171−179. doi: 10.1038/nature14338
    [14]
    Voigt C, Marushchak M E, Mastepanov M, et al. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw[J]. Global Change Biology, 2019, 25: 1746−1764. doi: 10.1111/gcb.14574
    [15]
    Turetsky M R, Wieder R K, Vitt D H, et al. The disappearance of relict permafrost in boreal north America: effects on peatland carbon storage and fluxes[J]. Global Change Biology, 2007, 13(9): 1922−1934. doi: 10.1111/j.1365-2486.2007.01381.x
    [16]
    Schuur E A G, Vogel J G, Crummer K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009, 459: 556−559. doi: 10.1038/nature08031
    [17]
    Abbott B W, Jones J B, Schuur E A G, et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment[J/OL]. Environmental Research Letters, 2016, 11(3): 034014 (2016−03−07) [2018−11−18]. https://doi.org/10.1088/1748-9326/11/3/034014.
    [18]
    Vestin P, Mölder M, Sundqvist E, et al. Significant emissions of methane and nitrous oxide following clear-cutting of a boreal forest stand[C]. San Francisco: AGU Fall Meeting, 2011.
    [19]
    Kubin E, Kemppainen L. Effect of clearcutting of boreal spruce forest on air and soil temperature conditions[J]. Acta Forestalia Fennica, 1991, 225(225): 1−41.
    [20]
    Sun G, Riekerk H, Kornhak L V. Ground-water-table rise after forest harvesting on cypress-pine flatwoods in Florida[J]. Wetlands, 2000, 20(1): 101−112. doi: 10.1672/0277-5212(2000)020[0101:GWTRAF]2.0.CO;2
    [21]
    Zerva A, Mencuccini M. Short-term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation[J]. Soil Biology and Biochemistry, 2005, 37(11): 2025−2036. doi: 10.1016/j.soilbio.2005.03.004
    [22]
    郝利, 牟长城, 常怡慧, 等. 采伐对小兴安岭森林沼泽非生长季土壤温室气体排放的影响[J]. 应用生态学报, 2019, 30(5):1713−1725.

    Hao L, Mu C C, Chang Y H, et al. Effects of harvest on greenhouse gas emissions from forested swamp during non-growing season in Xiaoxing’an Mountains of China[J]. Chinese Journal Applied Ecology, 2019, 30(5): 1713−1725.
    [23]
    Iwahana G, Machimura T, Kobayashi Y, et al. Influence of forest clear-cutting on the thermal and hydrological regime of the active layer near Yakutsk, eastern Siberia[J/OL]. Journal of Geophysical Research: Biogeosciences, 2005, 110: G02004 (2005−10−26) [2018−12−16]. https://doi.org/10.1029/2005JG000039.
    [24]
    Fedorov A N, Iwahana G, Konstantinov P Y, et al. Variability of permafrost and landscape conditions following clear cutting of larch forest in Central Yakutia[J]. Permafrost & Periglacial Processes, 2016, 28(1): 331−338.
    [25]
    牟长城, 吴云霞, 李婉姝, 等. 采伐对小兴安岭落叶松-泥炭藓沼泽温室气体排放的影响[J]. 应用生态学报, 2010, 21(2):287−293.

    Mu C C, Wu Y X, Li W S, et al. Effects of forest cutting on greenhouse gas emissions from Larix gmelini-sphagnum swamps in Lesser Xing’ an Mountains of Heilongjiang, China[J]. Chinese Journal Applied Ecology, 2010, 21(2): 287−293.
    [26]
    孙晓新, 牟长城, 宋长春, 等. 采伐对小兴安岭森林沼泽甲烷通量的影响[J]. 土壤通报, 2011, 42(1):190−194.

    Sun X X, Mu C C, Song C C, et al. Impact of harvesting on methane flux in Xiaoxing’an Mountains forest swamp[J]. Chinese Journal of Soil Science, 2011, 42(1): 190−194.
    [27]
    刘霞, 牟长城, 李婉姝, 等. 小兴安岭毛赤杨样地CH4、N2O排放规律及其对人为干扰的响应[J]. 环境科学学报, 2009, 29(12):2642−2650. doi: 10.3321/j.issn:0253-2468.2009.12.024

    Liu X, Mu C C, Li W S, et al. Emission of CH4 and N2O from Alnus sibirica swamps and the response to human disturbance the Xiaoxing’an Mountains[J]. Acta Scientiae Circumtantiae, 2009, 29(12): 2642−2650. doi: 10.3321/j.issn:0253-2468.2009.12.024
    [28]
    Huttunen J T, Nykänen H, Martikainen P J, et al. Fluxes of nitrous oxide and methane from drained peatlands following forest clear-felling in southern Finland[J]. Plant & Soil, 2003, 255(2): 457−462.
    [29]
    Gao S, Chen J, Tang Y, et al. Ecosystem carbon (CO2 and CH4) fluxes of a Populus dettoides plantation in subtropical China during and post clear-cutting[J]. Forest Ecology and Management, 2015, 357: 206−219. doi: 10.1016/j.foreco.2015.08.026
    [30]
    Olchev A, Kurbatova J, Mukhartova J, et al. The effect of deforestation and land-use changes on CO2 and H2O exchange between land surface and the atmosphere in the Upper Volga Area in Russia[C]. Berlin: EGU General Assembly Conference Abstracts, 2016.
    [31]
    Peckham S D, Gower S T. Simulated long-term effects of harvest and biomass residue removal on soil carbon and nitrogen content and productivity for two Upper Great Lakes forest ecosystems[J]. Global Change Biology Bioenergy, 2011, 3(2): 135−147. doi: 10.1111/j.1757-1707.2010.01067.x
    [32]
    Powers R F, Scott D A, Sanchez F G, et al. The North American long-term soil productivity experiment: findings from the first decade of research[J]. Forest Ecology and Management, 2005, 220(1−3): 31−50. doi: 10.1016/j.foreco.2005.08.003
    [33]
    Dawnm B, Kena E, Stephenb H, et al. The effects of partial harvest on the understory vegetation of southern Ontario woodlands[J]. Forest Ecology & Management, 2008, 255(7): 2204−2212.
    [34]
    Mu C, Lu H, Wang B, et al. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii: Carex schmidtii forested wetlands in Daxing’anling, northeast China[J]. Forest Ecology and Management, 2013, 293: 140−148. doi: 10.1016/j.foreco.2012.12.031
    [35]
    Connell M J, Raison R J, Jenkins P. Effects of thinning and coppice control on stand productivity and structure in a silvertop ash (Eucalyptus sieberi L. Johnson) forest[J]. Australian Forestry, 2004, 67(1): 30−38. doi: 10.1080/00049158.2004.10676203
    [36]
    Scott N A, Hollinger D, Davidson E A, et al. Changes in the net carbon balance following a shelterwood harvest at Howland Forest in central Maine seven years after harvest[C]. San Francisco, California, United States: AGU Fall Meeting Abstracts, 2009.
    [37]
    Raymond C L, Healey S, Peduzzi A, et al. Representative regional models of post-disturbance forest carbon accumulation: integrating inventory data and a growth and yield model[J]. Forest Ecology and Management, 2015, 336: 21−34. doi: 10.1016/j.foreco.2014.09.038
    [38]
    Amiro B D, Barr A G, Black T A, et al. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada[J]. Agricultural and forest meteorology, 2006, 136(3−4): 237−251. doi: 10.1016/j.agrformet.2004.11.012
    [39]
    Zha T, Barr A G, Black T A, et al. Carbon sequestration in boreal jack pine stands following harvesting[J]. Global Change Biology, 2009, 15(6): 1475−1487. doi: 10.1111/j.1365-2486.2008.01817.x
    [40]
    Fredeen A L, Waughtal J D, Pypker T G. When do replanted sub-boreal clearcuts become net sinks for CO2?[J]. Forest Ecology and Management, 2007, 239(1−3): 210−216. doi: 10.1016/j.foreco.2006.12.011
    [41]
    Clark K L, Gholz H L, Castro M S. Carbon dynamics along a chronosequence of slash pine plantations in north Florida[J]. Ecological Applications, 2004, 14(4): 1154−1171. doi: 10.1890/02-5391
    [42]
    Aguilos M, Takagi K, Liang N, et al. Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest[J]. Agricultural and Forest Meteorology, 2014, 197: 26−39. doi: 10.1016/j.agrformet.2014.06.002
    [43]
    Howard E A, Gower S T, Foley J A, et al. Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada[J]. Global Change Biology, 2004, 10(8): 1267−1284. doi: 10.1111/j.1529-8817.2003.00804.x
    [44]
    Goulden M L, McMillan A M S, Winston G C, et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession[J]. Global Change Biology, 2011, 17(2): 855−871. doi: 10.1111/j.1365-2486.2010.02274.x
    [45]
    Humphreys E R, Black T A, Morgenstern K, et al. Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting[J]. Agricultural and Forest Meteorology, 2006, 140(1−4): 6−22. doi: 10.1016/j.agrformet.2006.03.018
    [46]
    郭东信, 王绍令, 鲁国威, 等. 东北大小兴安岭多年冻土分区[J]. 冰川冻土, 1981, 3(3):1−9.

    Guo D X, Wang S L, Lu G W, et al. Zonation of permafrost in the Da-Xiao Xing anling Mountains in northeastern China[J]. Journal of Glaciology and Geocryology, 1981, 3(3): 1−9.
    [47]
    Jin H, Yu Q, Lü L, et al. Degradation of permafrost in the Xing’anling Mountains, northeastern China[J]. Permafrost and Periglacial Processes, 2007, 18(3): 245−258. doi: 10.1002/ppp.589
    [48]
    Liu X, Guo Y, Hu H, et al. Dynamics and controls of CO2 and CH4 emissions in the wetland of a montane permafrost region, northeast China[J]. Atmospheric Environment, 2015, 122: 454−462. doi: 10.1016/j.atmosenv.2015.10.007
    [49]
    Miao Y, Song C, Sun L, et al. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation[J]. Biogeosciences, 2012, 9(11): 4455−4464. doi: 10.5194/bg-9-4455-2012
    [50]
    王娇月, 韩耀鹏, 宋长春, 等. 冻融作用对大兴安岭多年冻土区泥炭地土壤有机碳矿化的影响研究[J]. 气候变化研究进展, 2018, 14(1):59−66.

    Wang J Y, Han Y P, Song C C, et al. Effects of freezing-thawing cycles on soil organic carbon mineralization in the peatland ecosystems from continuous permafrost zone, Great Hinggan Mountains[J]. Climate Change Reseach, 2018, 14(1): 59−66.
    [51]
    蒋磊, 宋艳宇, 宋长春, 等. 大兴安岭冻土区泥炭地土壤碳、氮含量和酶活性室内模拟研究[J]. 湿地科学, 2018, 16(3):294−302.

    Jiang L, Song Y Y, Song C C, et al. Indoor simulation study on carbon and nitrogen contents and enzyme activities of soils in permafrost region in Greater Khingan Mountains[J]. Wetland Science, 2018, 16(3): 294−302.
    [52]
    牟长城, 王彪, 卢慧翠, 等. 大兴安岭天然沼泽湿地生态系统碳储量[J]. 生态学报, 2013, 33(16):4956−4965. doi: 10.5846/stxb201212271884

    Mu C C, Wang B, Lu H C, et al. Carbon storage of natural wetland ecosystem in Daxing’anling of China[J]. Acta Ecologica Sinica, 2013, 33(16): 4956−4965. doi: 10.5846/stxb201212271884
    [53]
    Harden J W, Koven C D, Ping C L, et al. Field information links permafrost carbon to physical vulnerabilities of thawing[J]. Geophysical Research Letters, 2012, 39(15): 1−6.
    [54]
    Alm J, Schulman L, Walden J, et al. Carbon balance of a boreal bog during a year with an exceptionally dry summer[J]. Ecology, 1999, 80(1): 161−174. doi: 10.1890/0012-9658(1999)080[0161:CBOABB]2.0.CO;2
    [55]
    Kelley C A, Martens C S, Ussler Ⅲ W. Methane dynamics across a tidally flooded riverbank margin[J]. Limnology and Oceanography, 1995, 40(6): 1112−1129. doi: 10.4319/lo.1995.40.6.1112
    [56]
    吴艺雪, 杨效东, 余广彬. 两种热带雨林土壤微生物生物量碳季节动态及其影响因素[J]. 生态环境学报, 2009, 18(2):658−663. doi: 10.3969/j.issn.1674-5906.2009.02.049

    Wu Y X, Yang X D, Xu G B. Seasonal fluctuation of soil microbial biomass carbon and its influence factors in two types of tropical rainforests[J]. Ecology and Environmental Sciences, 2009, 18(2): 658−663. doi: 10.3969/j.issn.1674-5906.2009.02.049
    [57]
    Ström L, Christensen T R. Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland[J]. Soil Biology & Biochemistry, 2007, 39(7): 1689−1698.
    [58]
    Albert M R, Hardy J P. Ventilation experiments in seasonal snow cover[J]. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 1995, 228: 41−50.
    [59]
    Leon E, Vargas R, Bullock S, et al. Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem[J]. Soil Biology and Biochemistry, 2014, 77: 12−21. doi: 10.1016/j.soilbio.2014.05.029
    [60]
    Sollins P, Spycher G, Glassman C A. Net nitrogen mineralization from light-and heavy-fraction forest soil organic matter[J]. Soil Biology and Biochemistry, 1984, 16(1): 31−37. doi: 10.1016/0038-0717(84)90122-6
    [61]
    N.C. 布雷迪. 土壤的本质与性状[M]. 北京: 科学出版社, 1982.

    Brady N C. The nature and properties of soils[M]. Beijing: Science Press, 1982.
    [62]
    Mallik A U, Newaz S, Mackereth R W, et al. Geomorphic changes of headwater systems 3-23 years after forest harvesting by clearcutting[J]. Ecosphere, 2011, 2(4): 1−14.
  • Cited by

    Periodical cited type(2)

    1. 卢翠香,兰俊,陈健波,吴永富,邓紫宇,周维. 尾巨桉树轮异常结构的解剖学分析. 西南大学学报(自然科学版). 2019(04): 72-77 .
    2. 易敏,赖猛,张露,陈伏生,胡松竹. 人工林刨花楠木材主要特性的径向变异及其对气象因子的响应. 应用生态学报. 2018(11): 3677-3684 .

    Other cited types(5)

Catalog

    Article views (6296) PDF downloads (83) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return