• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Jinhang, Zhu Jiyou, Catherine Mhae B. Jandug, Zhao Kai, Xu Chengyang. Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress[J]. Journal of Beijing Forestry University, 2020, 42(2): 68-78. DOI: 10.12171/j.1000-1522.20190079
Citation: Li Jinhang, Zhu Jiyou, Catherine Mhae B. Jandug, Zhao Kai, Xu Chengyang. Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress[J]. Journal of Beijing Forestry University, 2020, 42(2): 68-78. DOI: 10.12171/j.1000-1522.20190079

Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress

More Information
  • Received Date: February 24, 2019
  • Revised Date: May 04, 2019
  • Available Online: December 01, 2019
  • Published Date: March 02, 2020
  • ObjectiveThis study aims to identify leaf functional trait variation patterns and differences of Cotinus coggygria seedlings from different locations and to analyse the influences of different geographic-climatic factors on leaf functional trait variations under continuous drought environment.
    MethodA standard continuous drought stress experiment was carried out using one-year-old C. coggygria seedlings from five different locations within China. Three levels of water regimes were set: control (CK, 75% ~ 80% of soil field capacity), moderate stress (MS, 55% ~ 65% of soil field capacity) and severe stress (SS, 35% ~ 45% of soil field capacity). ANOVA was used to identify the effects of drought, location and their interaction on leaf functional traits. On the other hand, the principal component analysis (PCA) and the redundancy analysis (RDA) were used to measure the relationship between location distribution of the species and the geographical-climatic factors and the influences of geographical-climatic conditions on leaf functional trait variation degree (TVD), respectively.
    Result(1) Drought stress had significant effects on all the leaf functional traits. Seedlings under SS had lower leaf function traits in terms of leaf chlorophyll content (LChl, 17.61%, P < 0.001), relative water content (RWC, 3.71%, P < 0.001), specific leaf area (SLA, 10.89%, P = 0.002), and leaf area ratio (LAR, 17.22%, P = 0.001) compared to the seedlings under CK. However, seedlings under SS had higher leaf dry matter content (LDMC) and leaf density (LD) than control by 9.04% (P < 0.001) and 14.52% (P = 0.009), respectively. (2) Correlations among leaf functional traits became stronger in drought environment, which showed that SLA had significantly (P < 0.01) negative links with LDMC and LD, LDMC and LD had a significant (P < 0.01) and positive relation, and RWC had significantly positive correlations with LChl (P < 0.01), SLA (P < 0.01) and LAR (P < 0.05). (3) The leaf functional traits showed significant differences among C. coggygria locations under drought treatments. SLA (P = 0.002), LChl (P = 0.025) and LD (P = 0.026) were significantly different under MS treatment, and LChl (P < 0.001), LAR (P < 0.001) and RWC (P = 0.005) were significantly different under SS treatment. (4) Among the five different locations, C. coggygria seedlings from Yanqing County in Beijing had the highest average trait variation degree (the mean values of all trait variation degrees) of 17.57%, while the lowest was from Jiang County of Yuncheng City in Shanxi Province of 6.97%. (5) After the screening of RDA, precipitation of the driest month (DMP, P = 0.002), growing season mean monthly precipitation difference (GSPD, P = 0.008), Max. temperature of the warmest month (WMT, P = 0.016) and average annual precipitation (ANP, P = 0.036) had significant effects on leaf functional trait variation degree. Particularly, DMP had negative relationships with all trait variation degree, but had more significantly negative correlations with the variation degree of LDMC and LD. GSPD and ANP had significantly negative correlationss with the variation degree of SLA and LAR. WMT was closer to the variation degree of LChl.
    ConclusionSignificant differences were found for leaf functional traits of C. coggygria among different drought treatments and different locations. The local climate (especially DMP, GSPD, WMT and ANP) was the main cause of leaf functional trait variation of C. coggygria from different locations under drought stress. Among seedlings from the five locations explored in our study, seedlings from Jiang County of Yuncheng City in Shanxi Province were more suitable to be introduced to the arid areas in northern China, as a result of a relatively high DMP, a proper GSPD and ANP, a relatively low WMT, and a low average leaf functional trait variation degree under drought stress.
  • [1]
    余华, 钟全林, 黄云波, 等. 不同种源刨花楠林下幼苗叶功能性状与地理环境的关系[J]. 应用生态学报, 2018, 29(2):449−458.

    Yu H, Zhong Q L, Huang Y B, et al. Relationships between leaf functional traits of Machilus pauhoi understory seedlings from different provenances and geographical environmental factors[J]. Chinese Journal of Applied Ecology, 2018, 29(2): 449−458.
    [2]
    张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系[J]. 生态学报, 2010, 30(21):5747−5758.

    Zhang H W, Ma J Y, Sun W, et al. Altitudinal variation in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China[J]. Acta Ecologica Sinica, 2010, 30(21): 5747−5758.
    [3]
    陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10):1135−1153.

    Chen Y T, Xu Z Z. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135−1153.
    [4]
    王玉平, 陶建平, 刘晋仙, 等. 不同光环境下6种常绿阔叶林树种苗期的叶片功能性状[J]. 林业科学, 2012, 48(11):23−29. doi: 10.11707/j.1001-7488.20121104

    Wang Y P, Tao J P, Liu J X, et al. Response of leaf functional traits to different light regimes in an evergreen broad-leaved forest in the Jinyun Mountain[J]. Scientia Silvae Sinicae, 2012, 48(11): 23−29. doi: 10.11707/j.1001-7488.20121104
    [5]
    孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1):150−165. doi: 10.3321/j.issn:1005-264X.2007.01.019

    Meng T T, Ni J, Wang G H. Plant functional traits, environments and ecosystem functioning[J]. Chinese Journal of Plant Ecology, 2007, 31(1): 150−165. doi: 10.3321/j.issn:1005-264X.2007.01.019
    [6]
    李颖, 姚婧, 杨松, 等. 东灵山主要树种在不同环境梯度下的叶功能性状研究[J]. 北京林业大学学报, 2014, 36(1):72−77.

    Li Y, Yao J, Yang S, et al. Leaf functional traits of main tree species at different environmental gradients in Dongling Mountain, Beijing[J]. Journal of Beijing Forestry University, 2014, 36(1): 72−77.
    [7]
    Males J, Griffiths H. Functional types in the Bromeliaceae: relationships with drought-resistance traits and bioclimatic distributions[J]. Functional Ecology, 2017, 31: 1868−1880. doi: 10.1111/1365-2435.12900
    [8]
    Sánchez-Gómez D, Zavala M A, Valladares F. Functional traits and plasticity linked to seedlings’ performance under shade and drought in Mediterranean woody species[J]. Annuals of Forest Science, 2008, 65(3): 311. doi: 10.1051/forest:2008004
    [9]
    Donovan L A, Maherali H, Caruso C M, et al. The evolution of the worldwide leaf economics spectrum[J]. Trends in Ecology & Evolution (Personal edition), 2011, 26(2): 88−95.
    [10]
    冯秋红, 史作民, 董莉莉. 植物功能性状对环境的响应及其应用[J]. 林业科学, 2008, 44(4):125−131. doi: 10.3321/j.issn:1001-7488.2008.04.023

    Feng Q H, Shi Z M, Dong L L. Response of plant functional traits to environment and its application[J]. Scientia Silvae Sinicae, 2008, 44(4): 125−131. doi: 10.3321/j.issn:1001-7488.2008.04.023
    [11]
    陈书文, 李娟娟, 雷新彦, 等. 观赏植物黄栌快繁技术研究[J]. 西北农林科技大学学报(自然科学版), 2005, 33(9):117−120.

    Chen S W, Li J J, Lei X Y, et al. Study on rapid propagateion technic for ornamental of Cotinus coggygria[J]. Journal of Northwest A&F University (Natural Science Edition), 2005, 33(9): 117−120.
    [12]
    孙鹏, 李金航, 刘海轩, 等. 黄栌根系结构与个体健康程度的关系[J]. 西北林学院学报, 2016, 31(2):20−27. doi: 10.3969/j.issn.1001-7461.2016.02.04

    Sun P, Li J H, Liu H X, et al. Relationship between root structure and health level of Cotinus coggygria trees[J]. Journal of Northwest Forestry University, 2016, 31(2): 20−27. doi: 10.3969/j.issn.1001-7461.2016.02.04
    [13]
    Deng Z J, Hu X F, Ai X R, et al. Dormancy release of Cotinus coggygria, seeds under a pre-cold moist stratification: an endogenous abscisic acid/gibberellic acid and comparative proteomic analysis[J]. New Forests, 2016, 47(1): 105−118. doi: 10.1007/s11056-015-9496-2
    [14]
    陆秀君, 董胜君, 毛红玉. 黄栌容器育苗及其对苗木耐旱性的影响[J]. 北京林业大学学报, 2001, 23(增刊):30−31.

    Lu X J, Dong S J, Mao H Y. Study on container seedling-raising of Cotinus coggygria var. pubescens and its effect on seedling’s drought resistance[J]. Journal of Beijing Forestry University, 2001, 23(Suppl.): 30−31.
    [15]
    李红云, 李焕平, 杨吉华, 等. 4种灌木林地土壤物理性状及抗侵蚀性能的研究[J]. 水土保持学报, 2006, 20(3):13−16. doi: 10.3321/j.issn:1009-2242.2006.03.004

    Li H Y, Li H P, Yang J H, et al. Study on soil physical properties and anti-erosion capability under four kinds of shrubbery[J]. Journal of Soil and Water Conservation, 2006, 20(3): 13−16. doi: 10.3321/j.issn:1009-2242.2006.03.004
    [16]
    李金航, 齐秀慧, 徐程扬, 等. 华北4产地黄栌幼苗根系形态对干旱胁迫的短期响应[J]. 北京林业大学学报, 2014, 36(1):48−54.

    Li J H, Qi X H, Xu C Y, et al. Short term responses of root morphology to drought stress of Cotinus coggygria seedlings from four varied locations in northern China[J]. Journal of Beijing Forestry University, 2014, 36(1): 48−54.
    [17]
    李金航, 齐秀慧, 徐程扬, 等. 黄栌幼苗叶片气体交换对干旱胁迫的短期响应[J]. 林业科学, 2015, 51(1):29−41.

    Li J H, Qi X H, Xu C Y, et al. Short-term responses of leaf gas exchange characteristics to drought stress of Cotinus coggygria seedlings[J]. Scientia Silvae Sinicae, 2015, 51(1): 29−41.
    [18]
    杨晓霞, 冷平生, 郑健, 等. 暴马丁香不同种源种子和幼苗的表型性状变异及其与地理−气候因子的相关性[J]. 植物资源与环境学报, 2016, 25(3):80−89. doi: 10.3969/j.issn.1674-7895.2016.03.10

    Yang X X, Leng P S, Zheng J, et al. Variation of phenotypic traits of seed and seedling of Syringa reticulata subsp. amurensis from different provenances and their correlations with geographic-climatic factors[J]. Journal of Plant Resources and Environment, 2016, 25(3): 80−89. doi: 10.3969/j.issn.1674-7895.2016.03.10
    [19]
    安海龙, 谢乾瑾, 刘超, 等. 水分胁迫和种源对黄柳叶功能性状的影响[J]. 林业科学, 2015, 51(10):75−84.

    An H L, Xie Q J, Liu C, et al. Effects of water stress and provenance on leaf functional traits of Salix gordejevii[J]. Scientia Silvae Sinicae, 2015, 51(10): 75−84.
    [20]
    白雪卡, 刘超, 纪若璇, 等. 种源地气候对蒙古莸光响应特性的影响[J]. 生态学报, 2018, 38(23):8425−8433.

    Bai X K, Liu C, Ji R X, et al. Effects of origin climate on light response characteristics of Caryopteris mongholica[J]. Acta Ecologica Sinica, 2018, 38(23): 8425−8433.
    [21]
    Ramírez-Valiente J A, Koehler K, Cavenderbares J. Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes)[J]. Tree Physiology, 2015, 35(5): 521−534. doi: 10.1093/treephys/tpv032
    [22]
    李永华, 卢琦, 吴波, 等. 干旱区叶片形态特征与植物响应和适应的关系[J]. 植物生态学报, 2012, 36(1):88−98.

    Li Y H, Lu Q, Wu B, et al. A review of leaf morphology plasticity linked to plant response and adaption characteristics in arid ecosystems[J]. China Journal of Plant Ecology, 2012, 36(1): 88−98.
    [23]
    靳泽辉, 苗峻峰, 张永端, 等. 华北地区极端降水变化特征及多模式模拟评估[J]. 气象科技, 2017, 45(1):91−100.

    Jin Z H, Miao J F, Zhang Y D, et al. Characteristics of extreme precipitation and its multi-model simulation evaluation in North China[J]. Meteorological Science and Technology, 2017, 45(1): 91−100.
    [24]
    刘大川, 周磊, 武建军. 干旱对华北地区植被变化的影响[J]. 北京师范大学学报(自然科学版), 2017, 53(2):222−228.

    Liu D C, Zhou L, Wu J J. Drought impacts on vegetation changes in North China[J]. Journal of Beijing Normal University (Natural Science), 2017, 53(2): 222−228.
    [25]
    王涛, 罗艳, 钟亦鸣, 等. 西北与华北地区现代降水变化趋势的对比[J]. 水文, 2017, 45(1):91−100.

    Wang T, Luo Y, Zhong Y M, et al. Comparison of recent precipitation tendency between Northwest and North China[J]. Journal of China Hydrology, 2017, 45(1): 91−100.
    [26]
    李岚, 王厚领, 赵琳, 等. 异源表达Peu-miR473a增强拟南芥的抗旱性[J]. 北京林业大学学报, 2015, 37(5):30−39.

    Li L, Wang H L, Zhao L, et al. Heterogeneous expression of Peu-miR473a gene confers drought tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2015, 37(5): 30−39.
    [27]
    朱济友, 于强, 刘亚培, 等. 植物功能性状及其叶经济谱对城市热环境的响应[J]. 北京林业大学学报, 2018, 40(9):72−81.

    Zhu J Y, Yu Q, Liu Y P, et al. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72−81.
    [28]
    Maseda P H, Fernández R J. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances[J]. Tree Physiology, 2016, 36(2): 243.
    [29]
    Valladares F, Sanchez-Gomez D, Zavala M A. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications[J]. Journal of Ecology, 2006, 94(6): 1103−1116. doi: 10.1111/j.1365-2745.2006.01176.x
    [30]
    朱济友, 于强, Di Y, et al. 叶生态特征及其相关性对下垫面热效应的生态权衡[J]. 农业机械学报, 2018, 49(1):201−209.

    Zhu J Y, Yu Q, Di Y., et al. Ecological balance of leaf ecological characteristics and their correlation to thermal effects of underlying surfaces[J]. Transactions of The Chinese Society of Agricultural Machinery, 2018, 49(1): 201−209.
    [31]
    Gholami M, Rahemi M, Rastegar S. Use of rapid screening methods for detecting drought tolerant cultivars of fig (Ficus carica L.)[J]. Scientia Horticulturae, 2012, 143: 7−14. doi: 10.1016/j.scienta.2012.05.012
    [32]
    Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought - from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3): 239−264. doi: 10.1071/FP02076
    [33]
    Marron N, Dreyer E. Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus × canadensis (Moench) clones, ‘Dorskamp’ and ‘Lusisa_Avanzo’[J]. Tree Physiology, 2003, 23(18): 1225−1235. doi: 10.1093/treephys/23.18.1225
    [34]
    Anderegg L D L, Hillerislambers J. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms[J]. Global Change Biology, 2016, 22(3): 1029−1045. doi: 10.1111/gcb.13148
    [35]
    Reich P B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto[J]. Journal of Ecology, 2014, 102(2): 275−301. doi: 10.1111/1365-2745.12211
    [36]
    Volaire F. Plant traits and functional types to characterise drought survival of pluri-specific perennial herbaceous swards in Mediterranean areas[J]. European Journal of Agronomy, 2008, 29(2−3): 116−124. doi: 10.1016/j.eja.2008.04.008
  • Cited by

    Periodical cited type(25)

    1. 成思丽,王丹,贺斌,胡兆柳,陈林,唐军荣,陈诗,许玉兰,蔡年辉. 不同苗龄云南松苗木平茬根系形态特征分析. 浙江农林大学学报. 2024(02): 322-332 .
    2. 蔡年辉,胡兆柳,贺斌,成思丽,陈林,唐军荣,陈诗,许玉兰,李根前. 云南松苗木萌枝能力对截干高度的响应. 西北农林科技大学学报(自然科学版). 2024(04): 85-94 .
    3. 向凌潇,张俊威,李建明. 灌溉量与灌溉频率对番茄根系生长、产量和营养元素吸收的影响. 西北农林科技大学学报(自然科学版). 2024(05): 80-92+123 .
    4. 崔远远,张征云,刘鹏,张运春,张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响. 生态环境学报. 2023(01): 158-165 .
    5. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    6. 胡静,张桥英,张运春,崔远远,谭晶华. 水位对若尔盖高原湿地植物群落结构和植物功能性状的影响. 绿色科技. 2023(06): 22-29 .
    7. 石海涛,张大才. 干旱胁迫对高寒草甸不同功能群植物的影响. 林业科技通讯. 2023(08): 48-51 .
    8. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 植物生长调节剂对云南松苗木根系形态的影响. 河南农业大学学报. 2022(03): 381-391 .
    9. 代丽丽,张传生,石研. 黄栌个体生长情况与根系结构的关系探究. 现代园艺. 2022(12): 6-8 .
    10. 张燕,葛江琨,李洪亮,杨晨,戴振芬,陈洪年. 高陡岩质边坡体裂隙率与植物生长速度的关系研究. 安全与环境工程. 2022(04): 93-100 .
    11. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 云南松苗木根系可塑性对平茬高度的响应. 云南大学学报(自然科学版). 2022(06): 1305-1313 .
    12. 杜志敏,向凌云,杜凯敏,杨文玲,王继雯,雷高,郭雪白,郭亮,周静,巩涛,陈国参,甄静. 磷灰石、石灰对Cd胁迫下黑麦草根形态及Cd吸收影响研究. 农业环境科学学报. 2021(01): 92-101 .
    13. 贾林巧,陈光水,张礼宏,陈廷廷,姜琦,陈宇辉,范爱连,王雪. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应. 应用生态学报. 2021(02): 529-537 .
    14. 李宝财,梁文汇,蓝金宣,李军集,杨卓颖,黄晓露. 不同沙土配比基质对岗松幼苗根系形态及营养吸收的影响. 广西林业科学. 2021(02): 157-163 .
    15. 郑诚,温仲明,郭倩,樊勇明,杨玉婷,高飞. 基于MaxEnt模型的延河流域草本植物适生分布与功能性状分析. 生态学报. 2021(17): 6825-6835 .
    16. 李佳佳,魏多,徐翎清,王秋红,马龙彪,刘大丽. 甜菜对低氮胁迫的形态学响应机制. 中国农学通报. 2021(36): 41-46 .
    17. 张祖衔,邓薇,李春,徐洪伟,周晓馥. 施加枯草芽孢杆菌和哈茨木霉对黄瓜幼苗生长的影响. 北方园艺. 2021(23): 11-20 .
    18. 张岚,张玲卫,刘会良,陈艳锋. 降水增加对古尔班通古特沙漠两种短命植物生长的影响. 应用生态学报. 2020(01): 9-16 .
    19. 李金航,周玫,朱济友,徐程扬. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究. 北京林业大学学报. 2020(03): 65-77 . 本站查看
    20. 李青,祖艳群,王吉秀,杨晶祥,牛秀艳. 铅锌矿区重金属胁迫对野生小花南芥根系特征的影响. 贵州农业科学. 2020(04): 148-152 .
    21. 吴焦焦,张文,高岚,谭星,乐佳兴,田秋玲,冯大兰,黄小辉,齐代华,许一丰,梁洪海,吴铭河,黄诗夏,刘芸. 三峡库区次生黄栌灌木林的群落特征及种间联结性. 生态学报. 2020(12): 4053-4063 .
    22. 李煜,赵国红,尹峰,宁立波. 岩质边坡覆绿植物的根系形态变化特征及影响因子研究. 湖南师范大学自然科学学报. 2020(02): 45-52+81 .
    23. 王效瑾,高巍,赵鹏,于冲冲,刘红恩,聂兆君,秦世玉,李畅. 小麦幼苗根系形态对镉胁迫的响应. 农业环境科学学报. 2019(06): 1218-1225 .
    24. 刘海,韦莉,任永胜,易艳灵,杨倩,李贤伟,范川. 柏木根系分泌物对栾树细根形态及N、P含量的影响. 西北植物学报. 2019(09): 1661-1669 .
    25. 周华健,冯文新,赵国红,尹峰,宁立波,白冰珂. 黄栌在高陡岩质边坡覆绿中的环境适应特征. 湖南师范大学自然科学学报. 2019(05): 60-64+80 .

    Other cited types(18)

Catalog

    Article views (2009) PDF downloads (118) Cited by(43)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return