• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Yanshuang, Fang Wen, Wang Xintong, Zhao Xiuting, Liao Guoli, Duan Jie, Ma Lüyi. Effects of waterlogging stress on growth, physiological and piochemistry characteristics of Magnolia wufengensis[J]. Journal of Beijing Forestry University, 2020, 42(1): 35-45. DOI: 10.12171/j.1000-1522.20190225
Citation: Wang Yanshuang, Fang Wen, Wang Xintong, Zhao Xiuting, Liao Guoli, Duan Jie, Ma Lüyi. Effects of waterlogging stress on growth, physiological and piochemistry characteristics of Magnolia wufengensis[J]. Journal of Beijing Forestry University, 2020, 42(1): 35-45. DOI: 10.12171/j.1000-1522.20190225

Effects of waterlogging stress on growth, physiological and piochemistry characteristics of Magnolia wufengensis

More Information
  • Received Date: May 13, 2019
  • Revised Date: June 02, 2019
  • Available Online: September 02, 2019
  • Published Date: January 13, 2020
  • ObjectiveMagnolia wufengensis has fleshy roots, which are very sensitive to water. In this paper, the waterlogging stress test of Magnolia wufengensis was carried out to investigate the effects of waterlogging environment on its growth, physiological and biochemical characteristics, which provided a theoretical basis for determining the suitable water environment for the growth of Magnolia wufengensis and its promotion work.
    MethodOne-year-old Magnolia wufengensis seedlings were used as experimental materials, and potted waterlogging method was utilized for 5 treatments: control (CK), waterlogging for 4 days (W4), 7 days (W7), 11 days (W11) and 15 days (W15). The growth, physiological and biochemical indexes of seedlings on days 1, 4, 7, 11, 15 after waterlogging and on the 2nd (R2), 5th (R5), and 8th (R8) days after stress relief were measured to analyze the response of Magnolia wufengensis seedings to waterlogging stress and self-recovery ability after waterlogging stress.
    ResultWith the increase of waterlogging stress time, the survival rates of W4, W7, and W11 decreased to 95.00%, 70.00%, and 60.00%, respectively, and all W15 seedlings died after 2 days of stress relief; the growth of seedling height and ground diameter decreased, and the growth of W11 seedlings restored to a basic standstill after stress relief; the content of chlorophyll showed a downward trend, and the difference between W11, W15 and CK was significant; Net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) showed a downward trend. Net photosynthetic rate and was significantly lower than CK in all treatments; the difference of stomatal conductance between W11, W15 and CK was significant; the transpiration rate was significantly different from CK except W4. Soluble protein content and malondialdehyde content gradually increased. The malondialdehyde content was significantly different from CK in all treatments, and soluble protein content was significantly different from CK except for W4. Superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities showed the same trend, which increased first and then decreased. SOD and POD under W11 and W15 treatments were significantly different from CK, and CAT activities were significantly different from CK except W4.
    ConclusionWith the increase of waterlogging stress time, the growth and physiological activities of Magnolia wufengensis seedlings were inhibited to extent, but they had certain recovery ability after the relief of waterlogging stress, and the shorter the stress time was, the stronger the recovery ability was. The waterlogging stress lasts for about 11 days. And it can basically reduce the damage by regulating the activity of the protective enzyme system and the content of osmotic adjustment substance, and maintain the normal physiological and metabolic functions of the plant body. Thus, the result indicates that Magnolia wufengensis has a certain tolerance to waterlog. When the waterlogging stress lasts for 15 days, it exceeded the regulation capacity of the plant itself, which will lead to its death.
  • [1]
    刘学师, 宋建伟, 任小林, 等. 水分胁迫对果树光合作用及相关因素的影响[J]. 河南职业技术师范学院学报, 2003, 31(1):45−48. doi: 10.3969/j.issn.1673-6060-B.2003.01.014

    Liu X S, Song J W, Ren X L, et al. Effect of water stress on photosynthesis and joined element of fruit tree[J]. Journal of Henan Vocation-Technical Teachers College, 2003, 31(1): 45−48. doi: 10.3969/j.issn.1673-6060-B.2003.01.014
    [2]
    陈亚飞, 杜国坚, 岳春雷, 等. 水分胁迫对普陀樟幼苗生长及生理特性的影响[J]. 浙江林业科技, 2009, 29(3):24−29. doi: 10.3969/j.issn.1001-3776.2009.03.006

    Chen Y F, Du G J, Yue C L, et al. Effect of water stress on growth and physiological properties of Cinnamomum japonicum var. chenii seedlings[J]. Journal of Zhejiang Forestry Science and Technology, 2009, 29(3): 24−29. doi: 10.3969/j.issn.1001-3776.2009.03.006
    [3]
    陈善福, 舒庆尧. 植物耐干旱胁迫的生物学机理及其基因工程研究进展[J]. 植物学通报, 1999, 16(5):555−560.

    Chen S F, Shu Q X. Biological mechanism of and genetic engineering for drought stress tolerance in plants[J]. Chinese Bulletin of Botany, 1999, 16(5): 555−560.
    [4]
    黄颜梅, 张健, 罗承德. 树木抗旱性研究(综述)[J]. 四川农业大学学报, 1997, 15(1):49−54.

    Huang Y M, Zhang J, Luo C D. Study on drought resistance of trees (summary)[J]. Journal of Sichuan Agricultural University, 1997, 15(1): 49−54.
    [5]
    Parolin P. Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees[J]. Oecologia, 2001, 128(3): 326−335. doi: 10.1007/s004420100660
    [6]
    王罗荣, 王健, 刘鑫, 等. 五峰县珍稀红花玉兰种质资源保护与开发利用对策[J]. 湖北林业科技, 2002(4):18−19. doi: 10.3969/j.issn.1004-3020.2002.04.006

    Wang L R, Wang J, Liu X, et al. Protection and countermeasure of developmental utilization is concerned on germ plasm resources of the safflower Magnolia denudata Desr. at Wufeng County[J]. Hubei Forestry Science and Technology, 2002(4): 18−19. doi: 10.3969/j.issn.1004-3020.2002.04.006
    [7]
    桑子阳, 马履一, 陈发菊. 干旱胁迫对红花玉兰幼苗生长和生理特性的影响[J]. 西北植物学报, 2011, 31(1):109−115.

    Sang Z Y, Ma L Y, Chen F J. Growth and physiological characteristics of Magnolia wufengensis seedlings under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(1): 109−115.
    [8]
    梁大伟. 红花玉兰优树选择与类型划分[D]. 北京: 北京林业大学, 2010.

    Liang D W. Selection on superior tree of Magnolia wufengensis and cultivar classification[D]. Beijing: Beijing Forestry University, 2010.
    [9]
    桑子阳. 红花玉兰花部性状多样性分析与抗旱性研究[D]. 北京: 北京林业大学, 2011.

    Sang Z Y. Diversity anlalysis of the floral traits and study on the drought resistance of Magnolia wufengensis[D]. Beijing: Beijing Forestry University, 2011.
    [10]
    桑子阳, 马履一, 陈发菊, 等. 五峰红花玉兰种质资源保护现状与开发利用对策[J]. 湖北农业科学, 2011, 50(8):1564−1567. doi: 10.3969/j.issn.0439-8114.2011.08.017

    Sang Z Y, Ma L Y, Chen F J, et al. Protection status and utilization countermeasure of germplasm resources of the Magnolia wufengensis in Wufeng County[J]. Hubei Agricultural Sciences, 2011, 50(8): 1564−1567. doi: 10.3969/j.issn.0439-8114.2011.08.017
    [11]
    李招弟. 红花玉兰(Magnolia wufengensis)幼苗光合特性及其对温度胁迫的生理响应[D]. 北京: 北京林业大学, 2009.

    Li Z D. Photosynthetic characteristics and physiological responses to temperature stress of Magnolia wufengensis seedlings[D]. Beijing: Beijing Forestry University, 2009.
    [12]
    赵世杰, 刘华山, 董新纯. 植物生理实验指导[M]. 北京: 中国农业出版社, 1997.

    Zhao S J, Liu H S, Dong X C. Guidance for plant physiological experiments[M]. Beijing: China Agricultural Press, 1997.
    [13]
    张志良, 瞿伟菁. 植物生理学实验指导(3版)[M]. 北京: 高等教育出版社, 2003.

    Zhang Z L, Qu W J. Guidance for plant physiology experiments (3rd edition)[M]. Beijing: Higher Education Press, 2003.
    [14]
    李合生. 植物生理实验指导[M]. 北京: 高等教育出版社, 2003.

    Li H S. Guidance of plant physiological experiments[M]. Beijing: Higher Education Press, 2003.
    [15]
    高俊凤. 植物生理学实验技术[M]. 北京: 世界图书出版公司, 2006.

    Gao J F. Experimental technology of plant physiology[M]. Beijing: World Book Inc., 2006.
    [16]
    李合生. 植物生理生化试验原理和技术[M]. 北京: 高等教育出版社, 2000.

    Li H S. Principle and technology of plant physiological and biochemical test[M]. Beijing: Higher Education Press, 2000.
    [17]
    邬燕, 刘志华, 刘钊. PEG模拟干旱胁迫下4 种葡萄生理指标的变化及其抗旱性评价[J/OL]. 分子植物育种, 2019 [2019−04−02]. http://kns.cnki.net/kcms/detail/46.1068.S.20190402.1336.004.html.

    Wu Y, Liu Z H, Liu Z. Changes of physiological indexes and drought resistance evaluation of 4 grapes under PEG simulated drought stress[J/OL]. Molecular plant breeding, 2019 [2019−04−02]. http://kns.cnki.net/kcms/detail/46.1068.S.20190402.1336.004.html.
    [18]
    关义新, 戴俊英, 林艳. 水分胁迫下植物叶片光合的气孔和非气孔限制[J]. 植物生理通讯, 1995, 31(4):293−297.

    Guan Y X, Dai J Y, Lin Y. The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress[J]. Plant Physiology Communications, 1995, 31(4): 293−297.
    [19]
    朱教君, 康宏樟, 李智辉, 等. 水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响[J]. 生态学报, 2005, 25(10):2527−2533. doi: 10.3321/j.issn:1000-0933.2005.10.010

    Zhu J J, Kang H Z, Li Z H, et al. Impact of water stress on survival and photosynthesis of Mongolian pine seedlings on sandy land[J]. Acta Ecologica Sinica, 2005, 25(10): 2527−2533. doi: 10.3321/j.issn:1000-0933.2005.10.010
    [20]
    Tang Z C, Kozlowski T T. Responses of Pinus banksiana and Pinus resinosa seedlings to flooding[J]. Canadian Journal of Forest Research, 1983, 13(4): 633−639. doi: 10.1139/x83-091
    [21]
    刘泽彬, 程瑞梅, 肖文发, 等. 模拟水淹对中华蚊母树生长及光合特性的影响[J]. 林业科学, 2014, 50(9):73−81.

    Liu Z B, Cheng R M, Xiao W F, et al. Effect of flooding on growth, photosynthesis and fluorescence characteristics of Distylium chinense[J]. Scientia Silvae Sinicae, 2014, 50(9): 73−81.
    [22]
    贺少轩, 梁宗锁, 蔚丽珍, 等. 土壤干旱对2个种源野生酸枣幼苗生长和生理特性的影响[J]. 西北植物学报, 2009, 29(7):1387−1393. doi: 10.3321/j.issn:1000-4025.2009.07.015

    He S X, Liang Z S, Wei L Z, et al. Growth and physiological characteristics of wild sour Jujube seedlings from two provenances under soil water stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(7): 1387−1393. doi: 10.3321/j.issn:1000-4025.2009.07.015
    [23]
    邓文, 莫荣立, 李勇, 等. 淹水胁迫对桑树生长及生理特性的影响[J]. 湖北农业科学, 2017, 56(23):4559−4567.

    Deng W, Mo R L, Li Y, et al. Effects of flooding stress on seedlings growth and physiological characteristics of Mulberry[J]. Hubei Agricultural Sciences, 2017, 56(23): 4559−4567.
    [24]
    杨鹏, 胥晓. 淹水胁迫对青杨雌雄幼苗生理特性和生长的影响[J]. 植物生态学报, 2012, 36(1):81−87.

    Yang P, Xu X. Effects of waterlogging stress on the growth and physiological characteristics of male and female Populus cathayana seedlings[J]. Chinese Journal of Plant Ecology, 2012, 36(1): 81−87.
    [25]
    张晓磊, 马风云, 陈益泰, 等. 水涝胁迫下不同种源麻栎生长与生理特性变化[J]. 西南林学院学报, 2010, 30(3):16−19.

    Zhang X L, Ma X Y, Chen Y T, et al. Variation in growth and physiological characteristics of different Quercus avutissima provenances under water logging stess[J]. Journal of Southwest Forestry University, 2010, 30(3): 16−19.
    [26]
    李昌晓, 钟章成. 模拟三峡库区消落带土壤水分变化条件下水松幼苗的光合生理响应[J]. 北京林业大学学报, 2007, 29(3):23−28. doi: 10.3321/j.issn:1000-1522.2007.03.004

    Li C X, Zhong Z C. Photosynthetic physio-response of Glyptostrobus pensilis seedlings to mimic soil water changes in the hydro-fluctuation belt of the Three Gorges Reservoir Area[J]. Journal of Beijing Forestry University, 2007, 29(3): 23−28. doi: 10.3321/j.issn:1000-1522.2007.03.004
    [27]
    李昌晓, 钟章成, 刘芸. 模拟三峡库区消落带土壤水分变化对落羽杉幼苗光合特性的影响[J]. 生态学报, 2005, 25(8):1953−1959. doi: 10.3321/j.issn:1000-0933.2005.08.018

    Li C X, Zhong Z C, Liu Y. Effect of soil water change on photosynthetic characteristics of Taxodium distichum seedlings in the hydro-fluctuation belt of the Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2005, 25(8): 1953−1959. doi: 10.3321/j.issn:1000-0933.2005.08.018
    [28]
    张起源, 张金政, 李晓东, 等. 长期淹水胁迫对东北玉簪生长及光合特性的影响[J]. 江苏农业科学, 2011, 39(3):200−203. doi: 10.3969/j.issn.1002-1302.2011.03.080

    Zhang Q Y, Zhang J Z, Li X D, et al. Effects of long-term flooding stress on growth and photosynthetic characteristics of Hosta clausa var. ensata[J]. Jiangsu Agricultural Science, 2011, 39(3): 200−203. doi: 10.3969/j.issn.1002-1302.2011.03.080
    [29]
    刘泽彬, 程瑞梅, 肖文发, 等. 水淹胁迫对植物光合生理生态的影响[J]. 世界林业研究, 2013, 26(3):33−38.

    Liu Z B, Cheng R M, Xiao W F, et al. Effect of waterlogging on photosynthetic and physioecological characteristics of plants[J]. World Forestry Research, 2013, 26(3): 33−38.
    [30]
    李芳兰, 包维楷, 吴宁. 白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J]. 生态学报, 2009, 29(10):5406−5416. doi: 10.3321/j.issn:1000-0933.2009.10.027

    Li F L, Bao W K, Wu N. Morphological and physiological responses of current Sophora davidii seedlings to drought stress[J]. Acta Ecologica Sinica, 2009, 29(10): 5406−5416. doi: 10.3321/j.issn:1000-0933.2009.10.027
    [31]
    Chartzuolakis K, Noitsakis B, Therios I. Photosynthesis, plant growth and carbon allocation in Kiwi, cv. Hayward, as influenced by water deficits[C]//International Symposium on Irrigation of Horticultural Crops, 1993: 227−234.
    [32]
    曹彤彤, 赵丹, 王桂凤. 水分胁迫对树木光合作用的影响研究综述[J]. 当代生态农业, 2011(1−2):112−114.

    Cao T T, Zhao D, Wang G F. Review on the effects of water stress on photosynthesis of trees[J]. Contemporary Eco-Agriculture, 2011(1−2): 112−114.
    [33]
    李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2006.

    Li H S. Modern plant physiology[M]. Beijing: Higher Education Press, 2006.
    [34]
    王慧群, 孙福增, 彭克勤, 等. 淹水处理对水稻叶片膜脂过氧化作用及细胞透性的影响[J]. 湖南农业大学学报, 1996, 22(3):222−224.

    Wang H Q, Sun F Z, Peng K Q, et al. Effects of flooding on membrane lipid peroxidation and cell permeability in rice leaves[J]. Journal of Hunan Agricultural University, 1996, 22(3): 222−224.
    [35]
    金忠民, 沙伟, 臧威, 等. 干旱胁迫对白三叶幼苗保护酶的影响[J]. 东北林业大学学报, 2010, 38(7):52−53. doi: 10.3969/j.issn.1000-5382.2010.07.017

    Jin Z M, Sha W, Zang W, et al. Effects of drought stress on protective enzymes of Trifolium repens seedlings[J]. Journal of Northeast Forestry University, 2010, 38(7): 52−53. doi: 10.3969/j.issn.1000-5382.2010.07.017
    [36]
    王宇超, 王得祥, 彭少兵, 等. 干旱胁迫对木本滨藜生理特性的影响[J]. 林业科学, 2010, 46(1):61−67. doi: 10.11707/j.1001-7488.20100110

    Wang Y C, Wang D X, Peng S B, et al. Effects of drought stress on physiological characteristics of woody saltbush[J]. Scientia Silvae Sinicae, 2010, 46(1): 61−67. doi: 10.11707/j.1001-7488.20100110
    [37]
    刘景辉, 赵海超, 任永峰, 等. 土壤水分胁迫对燕麦叶片渗透调节物质含量的影响[J]. 西北植物学报, 2009, 29(7):1432−1436. doi: 10.3321/j.issn:1000-4025.2009.07.022

    Liu J H, Zhao H C, Ren Y F, et al. change of osmotica in oat leaf under soil moisture stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(7): 1432−1436. doi: 10.3321/j.issn:1000-4025.2009.07.022
    [38]
    刘遵春, 包东娥. 水分胁迫对金光杏梅幼苗生长及其生理指标的影响[J]. 河北农业大学学报, 2007, 30(5):28−31. doi: 10.3969/j.issn.1000-1573.2007.05.008

    Liu Z C, Bao D E. Effect of water stress on growth and physiological indexes in Jinguang plum seedlings[J]. Journal of Agricultural University of Hebei, 2007, 30(5): 28−31. doi: 10.3969/j.issn.1000-1573.2007.05.008
    [39]
    胡义, 胡庭兴, 陈洪, 等. 干旱胁迫及复水对香樟幼树生理特性及生长的影响[J]. 西北植物学报, 2015, 35(2):294−301.

    Hu Y, Hu T X, Chen H, et al. Physiological properties and growth of Cinnamomum camphora saplings under drought stress and rewatering[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(2): 294−301.
    [40]
    梁建萍, 贾小云, 刘亚令, 等. 干旱胁迫对蒙古黄芪生长及根部次生代谢物含量的影响[J]. 生态学报, 2006, 36(14):4415−4422.

    Liang J P, Jia X Y, Liu Y L, et al. Effects of drought stress on seedling growth and accumulation of secondary metabolites in the roots of Astragalus membranaceus var. mongholicus[J]. Acta Ecologica Sinica, 2006, 36(14): 4415−4422.
    [41]
    孙一荣, 朱教君. 水分处理对沙地樟子松幼苗膜脂过氧化作用及保护酶活性影响[J]. 生态学杂志, 2008, 27(5):729−734.

    Sun Y R, Zhu J J. Effects of soilwater condition on membrane lipid peroxidation and protective enzyme activity of Pinus sylvestris var. mongolica seedlings[J]. Journal of Ecology, 2008, 27(5): 729−734.
    [42]
    许容榕, 王卓敏, 薛立. 水淹胁迫对乐昌含笑和樟树苗木生理特征的影响[J]. 热带林业, 2017, 45(2):14−18. doi: 10.3969/j.issn.1672-0938.2017.02.005

    Xu R R, Wang Z M, Xue L. Effects of submergence stress on physiological characteristics of Michelia chapensis and Cinnamomum camphora seedlings[J]. Tropical Forestry, 2017, 45(2): 14−18. doi: 10.3969/j.issn.1672-0938.2017.02.005
    [43]
    谢志玉, 张文辉, 刘新成. 干旱胁迫对文冠果幼苗生长和生理生化特征的影响[J]. 西北植物学报, 2010, 30(5):948−954.

    Xie Z Y, Zhang W H, Liu X C. Growth and physiological characteristics of Xanthoceras sorbifolia seedlings under soil drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(5): 948−954.
  • Cited by

    Periodical cited type(21)

    1. 彭小静,黄海山,严芝银,邹星晨,贺康宁,程唱,王作枭,李睿,刘婧雯,石正阳,刘仟仟. 祁连山东部地区不同林分密度白桦天然林土壤理化性质特征. 生态学报. 2025(02): 743-756 .
    2. 张佳凝,张建军,赖宗锐,赵炯昌,胡亚伟,李阳,卫朝阳. 林分密度对刺槐人工林土壤养分和微生物群落的影响. 干旱区研究. 2025(02): 274-288 .
    3. 武燕,李歆玉,张奕婷,丁波,张运林,符裕红,刘讯. 西南喀斯特地区不同龄组马尾松人工林枯落物碳氮磷化学计量特征及其影响因子. 北京林业大学学报. 2024(02): 87-94 . 本站查看
    4. 巩大鹏,毕华兴,王劲峰,赵丹阳,黄靖涵,宋艺琳. 晋西黄土区不同密度刺槐人工林叶片-枯落物-土壤化学计量特征. 林业科学研究. 2024(02): 156-164 .
    5. 陈宇,庞涛,瞿相,彭建,杨汉波,代林利,辜云杰. 造林密度对楠木幼龄林生长、土壤理化性质与酶活性的影响. 四川林业科技. 2024(03): 9-20 .
    6. 龚世豪,查同刚,张晓霞,张恒硕,高连炜,于洋. 晋西黄土区典型林分凋落物-土壤养分对降雨再分配变化的响应. 生态学报. 2024(17): 7748-7759 .
    7. 窦金萍,武小钢,杨秀云,陈冠光,靳雅君,吴茜. 不同类型豆科植物群落凋落物对城市土壤质量的影响. 林业调查规划. 2024(05): 198-204 .
    8. 贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 .
    9. 陈涛,王露露,王思崇,朱学灵,叶永忠. 河南省丘陵低山区刺槐人工林立地分类及立地质量评价. 西北林学院学报. 2023(01): 153-159 .
    10. 高利强,刘莹,王国梁. 人工和天然油松林表层土壤不同粒径团聚体有机碳及其组分分布特征. 水土保持学报. 2023(02): 320-328 .
    11. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    12. 张誉. 不同造林技术对水土保持林土壤特性的影响研究. 广东蚕业. 2023(03): 50-52 .
    13. 钟欢,董文渊,浦婵,谢泽轩,张炜,郑静楠,夏莉. 滇东北4种类型筇竹林分土壤碳氮磷生态化学计量特征研究. 西南林业大学学报(自然科学). 2023(03): 111-119 .
    14. 魏亚娟,刘美英,解云虎,李星. 吉兰泰盐湖防护体系建立38 a以来土壤养分特征. 干旱区研究. 2023(05): 747-755 .
    15. 党记刚. 陕西黄土区典型人工林分结构与水土保持功能耦合关系研究. 科技创新与生产力. 2023(08): 47-50 .
    16. 朱燕,翟博超,孙美美,罗伶书,王瑛,杜盛. 黄土丘陵区不同密度刺槐和油松人工林土壤理化性质与化学计量特征. 水土保持研究. 2023(06): 160-167 .
    17. 兰道云,毕华兴,赵丹阳,王宁,云慧雅,王珊珊,崔艳红. 晋西黄土区不同密度油松人工林保育土壤功能评价. 水土保持学报. 2022(02): 189-196 .
    18. 郭强,官凤英,辉朝茂,刘蔚漪,邹学明. 密度和施肥调控对巨龙竹新竹生长及生物量特征的影响. 北京林业大学学报. 2022(04): 95-106 . 本站查看
    19. 张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
    20. 郭鑫,魏天兴,陈宇轩,沙国良,任康,于欢. 黄土丘陵区典型退耕恢复植被土壤生态化学计量特征. 干旱区地理. 2022(06): 1899-1907 .
    21. 梁广国,陶建元,郭坤,王子旗,张艳明,王金颖. 不同林型、不同林分密度植被下土壤养分及其化学计量比研究. 吉林林业科技. 2021(06): 14-21 .

    Other cited types(13)

Catalog

    Article views (2038) PDF downloads (122) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return