• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
He Mengying, Dong Lihu, Li Fengri. Crown width prediction models for Larix olgensis and Fraxinus mandshurica mixed plantations[J]. Journal of Beijing Forestry University, 2020, 42(7): 23-32. DOI: 10.12171/j.1000-1522.20190250
Citation: He Mengying, Dong Lihu, Li Fengri. Crown width prediction models for Larix olgensis and Fraxinus mandshurica mixed plantations[J]. Journal of Beijing Forestry University, 2020, 42(7): 23-32. DOI: 10.12171/j.1000-1522.20190250

Crown width prediction models for Larix olgensis and Fraxinus mandshurica mixed plantations

More Information
  • Received Date: June 03, 2019
  • Revised Date: September 28, 2019
  • Available Online: June 09, 2020
  • Published Date: August 13, 2020
  •   Objective  Based on the data of 3 164 Larix olgensis sample trees and 3 574 Fraxinus mandshurica sample trees from 24 sample plots in mixed plantations from Maoershan Mountain Forest Farm and Yimianpo Forest Farm in Shangzhi City, Heilongjiang Province of northeastern China, the crown width models for Larix olgensis and Fraxinus mandshurica were developed.
      Method  By analyzing the variation rules of crown width of Larix olgensis and Fraxinus mandshurica in different mixed stands and the relationship between crown width with forest competition factors, the best model was selected from the basic models of six commonly used linear and nonlinear crown width models. The mixed proportion Si and the tree position P in the mixed strip were taken as dummy variables, and other tree variables and stand variables were added. The crown width models of Larix olgensis and Fraxinus mandshurica were developed, and the fitting effects of the models were evaluated.
      Result  The crown width of Larix olgensis and Fraxinus mandshurica was different in different mixed proportion Si and different position P in the mixed strip. The results showed that the ratio of tree DBH to dominant tree diameter (DDH) and the ratio of tree height to dominant tree height (HDH) were positively correlated with crown width, and the basal area of larger trees (BAL) was negatively correlated with crown width. Distance independent competition factors can reflect the competitive pressure of trees and have effect on crown width. The results showed that the crown ratio (CR) was positively correlated with crown width of Larix olgensis, the ratio of total tree height to DBH (HD) was negatively correlated with crown width of Larix olgensis, the dominant tree height of Fraxinus mandshurica (H0Fra) was positively correlated with crown width of Fraxinus mandshurica, the HD was negatively correlated with crown width of Fraxinus mandshurica. For the crown width models of Larix olgensis and Fraxinus mandshurica with the dummy variable P and Si, the Ra2 was 0.564 2 and 0.545 9, and for the crown width models of Larix olgensis and Fraxinus mandshurica with the tree variables (CR and HD) and stand variable (H0Fra), the Ra2 was 0.6745 and 0.5896.
      Conclusion  The crown width models of Larix olgensis and Fraxinus mandshurica, including the dummy variable Si and P, tree variables (CR and HD) and stand variable (H0Fra), have good fitting effects and prediction accuracy. Therefore, the crown width models established in this study can well predict the crown width of Larix olgensis and Fraxinus mandshurica in mixed plantations, and provide a basis for further study on the crown structure in mixed plantations.
  • [1]
    Monserud R A, Sterba H. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria[J]. Forest Ecology and Management, 1996, 80(1−3): 57−80. doi: 10.1016/0378-1127(95)03638-5
    [2]
    Carvalho J P, Parresol B R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.)[J]. Forest Ecology and Management, 2003, 179(1−3): 269−276.
    [3]
    Fu L Y, Yang L C, Wang G X, et al. Comparison of seemingly unrelated regressions with error-in-variable models for developing a system of nonlinear additive biomass equations[J]. Trees, 2016, 30(3): 839−857. doi: 10.1007/s00468-015-1325-x
    [4]
    Jiang L C, Liu R L. Segmented taper equations with crown ratio and stand density for Dahurian larch (Larix gmelinii) in northeastern China[J]. Journal of Forestry Research, 2011, 22(3): 347−352. doi: 10.1007/s11676-011-0178-4
    [5]
    Gonzalez-Benecke C A, Gezan S A, Samuelson L J, et al. Estimating Pinus palustris tree diameter and stem volume from tree height, crown area and stand-level parameters[J]. Journal of Forestry Research, 2014, 25(1): 43−52. doi: 10.1007/s11676-014-0427-4
    [6]
    Foli E G, Alder D, Miller H G, et al. Modelling growing space requirements for some tropical forest tree species[J]. Forest Ecology and Management, 2003, 173(1−3): 79−88. doi: 10.1016/S0378-1127(01)00815-5
    [7]
    Rautiainen M, Stenberg P. Simplified tree crown model using standard forest mensuration data for Scots pine[J]. Agricultural and Forest Meteorology, 2005, 128(1−2): 123−129. doi: 10.1016/j.agrformet.2004.09.002
    [8]
    Pretzsch H, Biber P, Uhl E, et al. Crown size and growing space requirement of common tree species in urban centres, parks, and forests[J]. Urban Forestry & Urban Greening, 2015, 14(3): 466−479.
    [9]
    Raptis D, Kazana V, Kazaklis A, et al. A crown width-diameter model for natural even-aged black pine forest management[J]. Forests, 2018, 9(10): 610−628. doi: 10.3390/f9100610
    [10]
    Sánchez-González M, Cañellas I, Montero G. Generalized height-diameter and crown diameter prediction models for cork oak forests in Spain[J]. Investigación Agraria: Sistemas y Recursos Forestales, 2007, 16(1): 76−88. doi: 10.5424/srf/2007161-00999
    [11]
    Fu L Y, Sun H, Sharma R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China[J]. Forest Ecology and Management, 2013, 302: 210−220.
    [12]
    Fu L Y, Sharma R P, Hao K J, et al. A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China[J]. Forest Ecology and Management, 2017, 389: 364−373. doi: 10.1016/j.foreco.2016.12.034
    [13]
    Sharma R P, Vacek Z, Vacek S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. Forest Ecology and Management, 2016, 366: 208−220. doi: 10.1016/j.foreco.2016.01.040
    [14]
    Sharma R P, Bílek L, Vacek Z, et al. Modelling crown width-diameter relationship for Scots pine in the central Europe[J]. Trees, 2017, 31(6): 1875−1889. doi: 10.1007/s00468-017-1593-8
    [15]
    Sharma R P, Vacek Z, Vacek S. Generalized nonlinear mixed-effects individual tree crown ratio models for Norway spruce and European beech[J]. Forests, 2018, 9(9): 555−573. doi: 10.3390/f9090555
    [16]
    Fu L Y, Sharma R P, Wang G X, et al. Modelling a system of nonlinear additive crown width models applying seemingly unrelated regression for Prince Rupprecht larch in northern China[J]. Forest Ecology and Management, 2017, 386: 71−80. doi: 10.1016/j.foreco.2016.11.038
    [17]
    Lei Y K, Fu L Y, Affleck D L R, et al. Additivity of nonlinear tree crown width models: aggregated and disaggregated model structures using nonlinear simultaneous equations[J]. Forest Ecology and Management, 2018, 427: 372−382. doi: 10.1016/j.foreco.2018.06.013
    [18]
    安慧, 上官周平. 密度对刺槐幼苗生物量及异速生长模式的影响[J]. 林业科学, 2008, 44(3):151−155. doi: 10.3321/j.issn:1001-7488.2008.03.028

    An H, Shangguan Z P. Effects of density on biomass and allometric pattern of Robinia pseudoacacia seedling[J]. Scientia Silvae Sinicae, 2008, 44(3): 151−155. doi: 10.3321/j.issn:1001-7488.2008.03.028
    [19]
    张彦东, 王庆成, 谷艳华. 水曲柳落叶松人工幼龄混交林生长与种间竞争关系[J]. 东北林业大学学报, 1999, 27(2):6−9. doi: 10.3969/j.issn.1000-5382.1999.02.002

    Zhang Y D, Wang Q C, Gu Y H. The relationship between growth and interspecific competition within the ash-larch mixed stand[J]. Journal of Northeast Forestry University, 1999, 27(2): 6−9. doi: 10.3969/j.issn.1000-5382.1999.02.002
    [20]
    Biging G S, Dobbertin M. Evaluation of competition indices in individual tree growth models[J]. Forest Science, 1995, 41(2): 360−377.
    [21]
    Ledermann T, Stage A R. Effects of competitor spacing in individual-tree indices of competition[J]. Canadian Journal of Forest Research, 2001, 31(12): 2143−2150.
    [22]
    赵俊卉. 长白山云冷杉混交林生长模型的研究[D]. 北京: 北京林业大学, 2010.

    Zhao J H. Growth modeling for spruce-fir forest in Changbai Mountains[D]. Beijing : Beijing Forestry University, 2010.
    [23]
    符利勇, 孙华. 基于混合效应模型的杉木单木冠幅预测模型[J]. 林业科学, 2013, 49(8):65−74. doi: 10.11707/j.1001-7488.20130810

    Fu L Y, Sun H. Individual crown diameter prediction for Cunninghamia lanceolata forests based on mixed effects models[J]. Scientia Silvae Sinicae, 2013, 49(8): 65−74. doi: 10.11707/j.1001-7488.20130810
    [24]
    Bragg D C. A local basal area adjustment for crown width prediction[J]. Northern Journal of Applied Forestry, 2001, 18(1): 22−28. doi: 10.1093/njaf/18.1.22
    [25]
    Sönmez T. Diameter at breast height-crown diameter prediction models for Picea orientalis[J]. African Journal of Agricultural Research, 2009, 4(3): 215−219.
    [26]
    雷相东, 张则路, 陈晓光. 长白落叶松等几个树种冠幅预测模型的研究[J]. 北京林业大学学报, 2006, 28(6):75−79. doi: 10.3321/j.issn:1000-1522.2006.06.013

    Lei X D, Zhang Z L, Chen X G. Crown-width prediction models for several tree species Including Larix olgensis in northeastern China[J]. Journal of Beijing Forestry University, 2006, 28(6): 75−79. doi: 10.3321/j.issn:1000-1522.2006.06.013
    [27]
    Kiernan D H, Bevilacqua E, Nyland R D. Individual-tree diameter growth model for sugar maple trees in uneven-aged northern hardwood stands under selection system[J]. Forest Ecology and Management, 2008, 256(9): 1579−1586. doi: 10.1016/j.foreco.2008.06.015
    [28]
    Yang Y Q, Huang S M. Allometric modelling of crown width for white spruce by fixed- and mixed-effects models[J]. The Forestry Chronicle, 2017, 93(2): 138−147. doi: 10.5558/tfc2017-020
    [29]
    罗梅, 陈绍志. 不同龄组长白落叶松种内及种间竞争研究[J]. 北京林业大学学报, 2018, 40(9):33−44.

    Luo M, Chen S Z. Intraspecific and interspecific competition of Larix olgensis plantations in different age groups[J]. Journal of Beijing Forestry University, 2018, 40(9): 33−44.
    [30]
    符利勇, 孙华, 张会儒, 等. 不同郁闭度下胸高直径对杉木冠幅特征因子的影响[J]. 生态学报, 2013, 33(8):2434−2443. doi: 10.5846/stxb201210291499

    Fu L Y, Sun H, Zhang H R, et al. Effects of diameter at breast height on crown characteristics of Chinese fir under different canopy density conditions[J]. Acta Ecologica Sinica, 2013, 33(8): 2434−2443. doi: 10.5846/stxb201210291499
    [31]
    Vospernik S, Monserud R A, Sterba H. Do individual-tree growth models correctly represent height: diameter ratios of Norway spruce and Scots pine?[J]. Forest Ecology and Management, 2010, 260(10): 1735−1753. doi: 10.1016/j.foreco.2010.07.055
  • Cited by

    Periodical cited type(12)

    1. 姜佟燃,燕云飞,姜立春. 基于广义加性模型的落叶松树冠半径模型研建. 北京林业大学学报. 2025(03): 73-82 . 本站查看
    2. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 .
    3. 高畅,王帆. 天然次生白桦单木冠幅预测模型研究. 西南林业大学学报(自然科学). 2024(05): 129-135 .
    4. 孙朝辉. 塞罕坝国家森林公园华北落叶松单木冠幅预测模型. 林业勘查设计. 2023(05): 88-94 .
    5. 单凯丽,臧颢,潘萍,宁金魁,欧阳勋志. 赣中天然闽楠单木冠幅预测模型的研究. 南京林业大学学报(自然科学版). 2022(01): 88-96 .
    6. 李应涛,刘时良,孙海龙,王卫霞,向玮. 云冷杉针阔混交林单木枝下高和冠幅模型构建. 森林与环境学报. 2022(03): 289-296 .
    7. 李佳柠,李明泽,全迎,王斌,莫祝坤. 无人机激光雷达与高光谱数据协同的帽儿山地区树种分类. 东北林业大学学报. 2022(06): 63-69+116 .
    8. 佟艺玟,陈东升,冯健,高慧淋. 基于线性分位数混合效应的辽东山区红松冠幅模型. 应用生态学报. 2022(09): 2321-2330 .
    9. 张晓芳,郭旭展,洪亮,陈涛,符利勇,张会儒. 冬奥核心区华北落叶松和白桦单木冠幅预测模型——组级贝叶斯模型、加性模型和混合效应模型比较. 林业科学. 2022(10): 89-100 .
    10. 马爱云,李凤日,董利虎. 应用混合效应法建立的杂种落叶松人工林单木冠幅预测模型. 东北林业大学学报. 2021(03): 9-14+38 .
    11. 周泽宇,符利勇,张晓红,张会儒,雷相东. 金沟岭林场天然云冷杉林冠幅模型和估计方法比较. 北京林业大学学报. 2021(08): 29-40 . 本站查看
    12. 姚慧芳,卢杰,王超,张萌. 基于混合效应法的急尖长苞冷杉林单木冠幅预测模型. 高原农业. 2021(06): 572-580 .

    Other cited types(11)

Catalog

    Article views (2215) PDF downloads (133) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return