• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Yansong, Ma Baoming, Gao Haiping, Wang Baitian, Li Sha, Dong Xiuqun. Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 81-93. DOI: 10.12171/j.1000-1522.20190287
Citation: Wang Yansong, Ma Baoming, Gao Haiping, Wang Baitian, Li Sha, Dong Xiuqun. Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 81-93. DOI: 10.12171/j.1000-1522.20190287

Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China

More Information
  • Received Date: July 07, 2019
  • Revised Date: November 21, 2019
  • Available Online: July 31, 2020
  • Published Date: September 06, 2020
  •   Objective  This paper aims to study the changes and differences of soil nutrient and stoichiometry of Pinus tabuliformis and Robinia pseudoacacia plantations under different densities to strengthen the stand management and ecological restoration of artificial forests in the Loess Plateau of northern China.
      Method  P. tabuliformis and R. pseudoacacia plantations were taken as research objects, and they were divided into three groups of stand density: high (2 000−2 700 plant/ha), medium (1 100−1 600 plant/ha) and low (800−1 100 plant/ha). Four kinds of stands with different densities were selected for each group, and soil samples were taken in layers respectively to measure the physical and chemical properties of soil.
      Result  (1) Two-factor analysis of variance showed that the stand type had a significant effect on total P, C:P, N:P, the stand density only had a significant effect on total P, and the stand type and stand density had a jointly significant effect on organic carbon, total N, total P, C:P, N:P. (2) The organic carbon and total N of P. tabuliformis and R. pseudoacacia forests with different stand densities were as follows: high density P. tabuliformis forests (Pinus H) > medium density P. tabuliformis forests (Pinus M) > low density R. pseudoacacia forests (Robinia L) > high density R. pseudoacacia forests (Robinia H) > low density P. tabuliformis forests (Pinus L) > medium density R. pseudoacacia forests (Robinia M ), and the total P is as follows: Robinia M > Pinus H > Robinia L > Robinia H > Pinus M > Pinus L. With the increase of stand density, the contents of organic carbon and total N in all soil layers of P. tabuliformis forest showed gradual increase, while the changes of total P content were relatively stable and had no significant difference. The contents of organic carbon and total N in all soil layers of R. pseudoacacia forest first decreased and then slightly increased, while the contents of total P first increased and then decreased. Under the same density and different stand types, the soil nutrient content of P. tabuliformis forest was better than R. pseudoacacia forest at high density and medium density, but it was opposite at low density. (3) The C∶N ratios of P. tabuliformis and R. pseudoacacia forests with different stand densities were as follows: Pinus H > Robinia H > Robinia L > Pinus M > Robinia M > Pinus L and the C∶P and N∶P ratios were as follows: Pinus H > Pinus M > Robinia L > Robinia H > Pinus L > Robinia M. With the increase of stand density, the soil C∶P and N∶P in P. tabuliformis forest gradually increased, the availability of phosphorus gradually decreased, while the soil C∶P and N∶P in R. pseudoacacia forest decreased first and then increased, the availability of phosphorus first increased and then decreased. The availability of phosphorus in P. tabuliformis forest soil was lower than that in R. pseudoacacia forest with the same density under high and medium density, but the opposite was true under low density. Soil organic carbon and total N determined the levels of C:P and N:P respectively to a great extent. Under different stand densities, soil C:N was relatively stable, soil nitrogen content was relatively deficient, and growth process was limited by nitrogen. (4) The soil nutrient content of P. tabuliformis and R. pseudoacacia under different forest densities showed an “ surface aggregation phenomenon ” and soil organic carbon, total N, total P, C∶P, N∶P gradually decreased with the increase of soil depth. C∶N had no obvious law. With the increase of stand density, the variation intensity of soil properties of P. tabuliformis forest firstly decreased and then increased, while that of R. pseudoacacia forest increased slowly. Compared with P. tabuliformis forest, stand density had less influence on the vertical variation of soil nutrients and stoichiometry of R. pseudoacacia forest, and the vertical variation tended to be more stable. (5) The change of stand density will change the influence of soil physical properties on soil nutrient and its stoichiometric ratio to different extent. The effects of soil bulk density on soil nutrient content and stoichiometric ratio were the greatest under different stand densities, followed by non capillary porosity.
      Conclusion  Generally, under different densities of the same stand type, P. tabuliformis forest is at a better level in soil nutrient content and its vertical variation, phosphorus availability and nitrogen limitation at medium density, while R. pseudoacacia forest was at low density in comparison. Under the same density and different stand types, the comprehensive performance of P. tabuliformis forest in high density and medium density was better than that of R. pseudoacacia forest with the same density, but it is opposite in low density.
  • [1]
    刘建明, 姚颖, 刘忠玲, 等. 不同林分密度榛子天然林土壤养分特征研究[J]. 森林工程, 2018, 34(3):1−5. doi: 10.3969/j.issn.1006-8023.2018.03.001

    Liu J M, Yao Y, Liu Z L, et al. Study on nutrient characteristics of soil in natural corylus forest stands of different stocking densities[J]. Forest Engineering, 2018, 34(3): 1−5. doi: 10.3969/j.issn.1006-8023.2018.03.001
    [2]
    董威, 刘泰瑞, 覃志杰, 等. 不同林分密度油松天然林土壤理化性质及微生物量碳氮特征研究[J]. 生态环境学报, 2019, 28(1):65−72.

    Dong W, Liu T R, Qin Z J, et al. Research on the characteristics of soil physicochemical properties and microbial biomass carbon and nitrogen in natural <italic>Pinus tabulaeformis</italic> forests with different stand densities[J]. Ecology and Environmental Sciences, 2019, 28(1): 65−72.
    [3]
    刘璐, 葛结林, 舒化伟, 等. 神农架常绿落叶阔叶混交林碳氮磷化学计量比[J]. 植物生态学报, 2019, 43(6):482−489. doi: 10.17521/cjpe.2019.0064

    Liu L, Ge J L, Shu H W, et al. C, N and P stoichiometric ratios in mixed evergreen and deciduous broadleaved forests in Shennongjia, China[J]. Chinese Journal of Plant Ecology, 2019, 43(6): 482−489. doi: 10.17521/cjpe.2019.0064
    [4]
    杨祥祥, 李梦琦, 何兴东, 等. 沙地植被碳氮磷化学计量特征与物种多样性的关系[J]. 应用生态学报, 2018, 29(9):2819−2824.

    Yang X X, Li M Q, He X D, et al. Relationship between vegetation C, N, P stoichiometry and species diversity in sand land[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2819−2824.
    [5]
    邓成华, 吴龙龙, 张雨婷, 等. 不同林龄油茶人工林土壤-叶片碳氮磷生态化学计量特征[J]. 生态学报, 2019, 39(24):9152−9162.

    Deng C H, Wu L L, Zhang Y T, et al. The stoichiometry characteristics of soil and plant carbon, nitrogen, and phosphorus in different stand ages in <italic>Camellia oleifera</italic> plantation[J]. Acta Ecologica Sinica, 2019, 39(24): 9152−9162.
    [6]
    朱湾湾, 王攀, 樊瑾, 等. 降水量及N添加对宁夏荒漠草原土壤C∶N∶P生态化学计量特征和植被群落组成的影响[J]. 草业学报, 2019, 28(9):33−44. doi: 10.11686/cyxb2019232

    Zhu W W, Wang P, Fan J, et al. Effect of precipitation and N addition on soil C:N:P ecological stoichiometry and plant community composition in a desert steppe of Ningxa, northwestern China[J]. Acta Prataculturae Sinica, 2019, 28(9): 33−44. doi: 10.11686/cyxb2019232
    [7]
    王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8):3937−3947. doi: 10.3321/j.issn:1000-0933.2008.08.054

    Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937−3947. doi: 10.3321/j.issn:1000-0933.2008.08.054
    [8]
    邓健, 张丹, 张伟, 等. 黄土丘陵区刺槐叶片-土壤-微生物碳氮磷化学计量学及其稳态性特征[J]. 生态学报, 2019, 39(15):5527−5535.

    Deng J, Zhang D, Zhang W, et al. Carbon, nitrogen, and phosphorus stoichiometry and homeostasis characteristics of leaves, soil, and microbial biomass of <italic>Robinia pseudoacacia</italic> forests in the loess hilly region of China[J]. Acta Ecologica Sinica, 2019, 39(15): 5527−5535.
    [9]
    Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1/2/3): 139−151.
    [10]
    姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松(<italic>Pinus tabulaeformis</italic>)人工林植物、凋落物与土壤C、N、P化学计量特征[J]. 生态学报, 2016, 36(19):6188−6197.

    Jiang P P, Cao Y, Chen Y M, et al. Variation of C, N, and P stoichiometry in plant tissue, litter, and soil during stand development in <italic>Pinus tabulaeformis</italic> plantation[J]. Acta Ecologica Sinica, 2016, 36(19): 6188−6197.
    [11]
    章广琦, 张萍, 陈云明, 等. 黄土丘陵区刺槐与油松人工林生态系统生态化学计量特征[J]. 生态学报, 2018, 38(4):1328−1336.

    Zhang G Q, Zhang P, Chen Y M, et al. Stoichiometric characteristics of <italic>Robinia pseudoacacia</italic> and <italic>Pinus tabuliformis</italic> plantation ecosystems in the loess hilly-gully region, China[J]. Acta Ecologica Sinica, 2018, 38(4): 1328−1336.
    [12]
    宋亚辉, 艾泽民, 乔磊磊, 等. 施肥对黄土高原农地土壤碳氮磷生态化学计量比的影响[J]. 水土保持研究, 2019, 26(6):38−45, 52.

    Song Y H, Ai Z M, Qiao L L, et al. Effects of fertilization on ecological stoichiometric ratio soil carbon, nitrogen and phosphorus in farmland of Loess Plateau[J]. Research of Soil and Water Conservation, 2019, 26(6): 38−45, 52.
    [13]
    朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15):4674−4682. doi: 10.5846/stxb201212101772

    Zhu Q L, Xing X Y, Zhang H, et al. Soil ecological stoichiometry under different vegetation area on loess hilly-gully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674−4682. doi: 10.5846/stxb201212101772
    [14]
    吕金林, 闫美杰, 宋变兰, 等. 黄土丘陵区刺槐、辽东栎林地土壤碳、氮、磷生态化学计量特征[J]. 生态学报, 2017, 37(10):3385−3393.

    Lü J L, Yan M J, Song B L, et al. Ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in an oak forest and a black locust plantation in the loess hilly region[J]. Acta Ecologica Sinica, 2017, 37(10): 3385−3393.
    [15]
    王风芹, 田丽青, 宋安东, 等. 华北刺槐林与自然恢复植被土壤微生物量碳、氮含量四季动态[J]. 林业科学, 2015, 51(3):16−24.

    Wang F Q, Tian L Q, Song A D, et al. Seasonal dynamics of microbial biomass carbon and nitrogen in soil of <italic>Robinia pseudoacacia</italic> forests and near-naturally restored vegetation in northern China[J]. Scientia Silvae Sinicae, 2015, 51(3): 16−24.
    [16]
    韦景树, 李宗善, 冯晓玙, 等. 黄土高原人工刺槐林生长衰退的生态生理机制[J]. 应用生态学报, 2018, 29(7):2433−2444.

    Wei J S, Li Z S, Feng X Y, et al. Ecological and physiological mechanisms of growth decline of <italic>Robinia pseudoacacia</italic> plantations in the Loess Plateau of China: a review[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2433−2444.
    [17]
    周巧稚, 毕华兴, 孔凌霄, 等. 晋西黄土区不同密度刺槐林枯落物层水文生态功能研究[J]. 水土保持学报, 2018, 32(4):115−121.

    Zhou Q Z, Bi H X, Kong L X, et al. Hydrological and ecological functions of litter layer under <italic>Robinia pseucdoacacia</italic> plantation with different densities in loess region of western Shanxi Province[J]. Journal of Soil and Water Conservation, 2018, 32(4): 115−121.
    [18]
    李翔, 王海燕, 秦倩倩, 等. 林分密度对半分解层凋落物现存量空间异质性的影响[J]. 应用与环境生物学报, 2019, 25(4):817−822.

    Li X, Wang H Y, Qin Q Q, et al. Effects of stand density on spatial heterogeneity of standing crop in semi-decomposition litter layer[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(4): 817−822.
    [19]
    覃志杰, 董威, 刘泰瑞, 等. 油松天然次生林林下植物多样性对林分密度的响应研究[J]. 山西农业大学学报(自然科学版), 2019, 39(1):61−67.

    Qin Z J, Dong W, Liu T R, et al. Responses of understory plant diversity to stand density in natural secondary forests of <italic>Pinus tabulaeformis</italic>[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2019, 39(1): 61−67.
    [20]
    郭琳. 黄土高原刺槐人工林群落植物物种多样性研究[D]. 杨凌: 西北农林科技大学, 2010.

    Guo L. Studies on plant species diversity of Robinia pseudoacacia in Loess Plateau [D]. Yangling: Northwest A&F University, 2010.
    [21]
    高艳鹏. 半干旱黄土丘陵沟壑区主要树种人工林密度效应评价[D]. 北京: 北京林业大学, 2011.

    Gao Y P. Assessment of main plantation density effect in the semiarid loess hilly-gully regions[D]. Beijing: Beijing Forestry University, 2011.
    [22]
    刘愿, 陈云明, 梁思琦, 等. 陕北黄土丘陵区刺槐人工林土壤生态化学计量特征[J]. 水土保持研究, 2019, 26(4):43−49.

    Liu Y, Chen Y M, Liang S Q, et al. Soil ecological stoichiometry characteristics of <italic>Robinia pseudoacacia</italic> plantation in the loess hilly gully regions of northern Shaanxi Province[J]. Research of Soil and Water Conservation, 2019, 26(4): 43−49.
    [23]
    刘兴锋, 刘思凡, 蒋龙, 等. 湘西北石漠化区不同植被类型土壤C、N、P的化学计量特征[J]. 中南林业科技大学学报, 2019, 39(2):72−78.

    Liu X F, Liu S F, Jiang L, et al. Stoichiometric characteristics of soil C, N and P in different vegetation types in the rocky desertification area of northwestern Hunan Province[J]. Journal of Central South University of Forestry & Technology, 2019, 39(2): 72−78.
    [24]
    任丽娜, 王海燕, 丁国栋, 等. 密度调控对华北落叶松人工林土壤有机碳及养分特征的影响[J]. 干旱区资源与环境, 2012, 26(4):138−143.

    Ren L N, Wang H Y, Ding G D, et al. Effects of <italic>Larix principis-rupprechtii</italic> plantation density control on soil organic carbon and nutrients characteristics[J]. Journal of Arid Land Resources and Environment, 2012, 26(4): 138−143.
    [25]
    范少辉, 赵建诚, 苏文会, 等. 不同密度毛竹林土壤质量综合评价[J]. 林业科学, 2015, 51(10):1−9.

    Fan S H, Zhao J C, Su W H, et al. Comprehensive evaluation of soil quality in <italic>Phyllostachys edulis</italic> stands of different stocking stocking densities[J]. Scientia Silvae Sinicae, 2015, 51(10): 1−9.
    [26]
    郭敬丽, 崔立志, 赵会艳, 等. 林分密度对人工油松林林下植物多样性的影响[J]. 林业与生态科学, 2018, 33(3):275−280.

    Guo J L, Cui L Z, Zhao H Y, et al. Impact of stand density on plant diversity under artificial <italic>Pinus tabulaeformis</italic>[J]. Forestry and Ecological Sciences, 2018, 33(3): 275−280.
    [27]
    刘晨峰, 尹婧, 贺康宁. 林下植被对半干旱区不同密度刺槐林地土壤水分环境的指示作用[J]. 中国水土保持科学, 2004, 2(2):62−67, 79. doi: 10.3969/j.issn.1672-3007.2004.02.012

    Liu C F, Yin J, He K N. Indicatory function of soil moisture of undergrowth vegetations in the <italic>Robinia pseudoacacia</italic> forests with different densities in semi-arid region on the Loess Plateaus[J]. Science of Soil and Water Conservation, 2004, 2(2): 62−67, 79. doi: 10.3969/j.issn.1672-3007.2004.02.012
    [28]
    尹达, 杜宁, 徐飞, 等. 外来物种刺槐(<italic>Robinia pseudoacacia</italic> L.)在中国的研究进展[J]. 山东林业科技, 2014, 44(6):92−99. doi: 10.3969/j.issn.1002-2724.2014.06.026

    Yin D, Du N, Xu F, et al. Research progress of alien species of <italic>Robinia pseudoacacia</italic> L. in China[J]. Journal of Shandong Forestry Science and Technology, 2014, 44(6): 92−99. doi: 10.3969/j.issn.1002-2724.2014.06.026
    [29]
    吴多洋, 焦菊英, 于卫洁, 等. 陕北刺槐林木生长及林下植被与土壤水分对种植密度的响应特征[J]. 西北植物学报, 2017, 37(2):346−355. doi: 10.7606/j.issn.1000-4025.2017.02.346

    Wu D Y, Jiao J Y, Yu W J, et al. Response characteristics of locust growth, understory vegetation and soil moisture on planting density in northern Shanxi[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(2): 346−355. doi: 10.7606/j.issn.1000-4025.2017.02.346
    [30]
    刘冰燕, 陈云明, 曹扬. 渭北黄土区刺槐人工林氮、磷生态化学计量特征[J]. 西北林学院学报, 2016, 31(1):1−6, 14. doi: 10.3969/j.issn.1001-7461.2016.01.01

    Liu B Y, Chen Y M, Cao Y. Nitrogen and phosphorus stoichiometry characteristics of <italic>Robinia pseudoacacia</italic> plantation in Weibei Loess Plateau region[J]. Journal of Northwest Forestry University, 2016, 31(1): 1−6, 14. doi: 10.3969/j.issn.1001-7461.2016.01.01
    [31]
    丁继伟, 张芸香, 郭跃东, 等. 华北落叶松天然林密度对林下植被物种组成和多样性的影响研究[J]. 西北林学院学报, 2018, 33(4):10−16. doi: 10.3969/j.issn.1001-7461.2018.04.02

    Ding J W, Zhang Y X, Guo Y D, et al. Influences of the density on understory species composition and diversity of <italic>Larix principis-rupprechtii</italic> natural forest[J]. Journal of Northwest Forestry University, 2018, 33(4): 10−16. doi: 10.3969/j.issn.1001-7461.2018.04.02
    [32]
    张剑, 宿力, 王利平, 等. 植被盖度对土壤碳、氮、磷生态化学计量比的影响: 以敦煌阳关湿地为例[J]. 生态学报, 2019, 39(2):580−589.

    Zhang J, Su L, Wang L P, et al. The effect of vegetation cover on ecological stoichiometric ratios of soil carbon, nitrogen and phosphorus: a case study of the Dunhuang Yangguan Wetland[J]. Acta Ecologica Sinica, 2019, 39(2): 580−589.
    [33]
    张芸, 李惠通, 张辉, 等. 不同林龄杉木人工林土壤C∶N∶P化学计量特征及其与土壤理化性质的关系[J]. 生态学报, 2019, 39(7):2520−2531.

    Zhang Y, Li H T, Zhang H, et al. Soil C:N:P stoichiometry and its relationship with the soil physicochemical properties of different aged Chinese fir (<italic>Cunninghamia lanceolata</italic>) plantations[J]. Acta Ecologica Sinica, 2019, 39(7): 2520−2531.
    [34]
    张萍, 章广琦, 赵一娉, 等. 黄土丘陵区不同森林类型叶片—凋落物—土壤生态化学计量特征[J]. 生态学报, 2018, 38(14):5087−5098.

    Zhang P, Zhang G Q, Zhao Y P, et al. Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the loess hilly-gully region of China[J]. Acta Ecologica Sinica, 2018, 38(14): 5087−5098.
    [35]
    Tian H Q, Chen G S, Zhng G C, et al. Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98: 139−151. doi: 10.1007/s10533-009-9382-0
    [36]
    赵伟文, 梁文俊, 魏曦. 不同林分类型对土壤理化性质特征的影响[J]. 山西农业大学学报(自然科学版), 2019, 39(2):61−68.

    Zhao W W, Liang W J, Wei X. Effects of different forest types on soil characteristics[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2019, 39(2): 61−68.
    [37]
    周树平, 梁坤南, 杜健, 等. 不同密度柚木人工林林下植被及土壤理化性质的研究[J]. 植物研究, 2017, 37(2):200−210. doi: 10.7525/j.issn.1673-5102.2017.02.007

    Zhou S P, Liang K N, Du J, et al. Research on understory vegetation and soil physical-chemical properties of teak plantation with difference stand densities[J]. Bulletin of Botanical Research, 2017, 37(2): 200−210. doi: 10.7525/j.issn.1673-5102.2017.02.007
    [38]
    李红林, 贡璐, 朱美玲, 等. 塔里木盆地北缘绿洲土壤化学计量特征[J]. 土壤学报, 2015, 52(6):1345−1355.

    Li H L, Gong L, Zhu M L, et al. Stoichiometric characteristics of soil in an oasis on northern edge of Tarim Basin, China[J]. Acta Pedologica Sinica, 2015, 52(6): 1345−1355.
    [39]
    秦海龙, 付旋旋, 卢瑛, 等. 广西猫儿山不同海拔土壤碳氮磷生态化学计量特征[J]. 应用生态学报, 2019, 30(3):711−717.

    Qin H L, Fu X X, Lu Y, et al. Soil C:N:P stoichiometry at different altitudes in Mao’er Mountain, Guangxi, China[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 711−717.
  • Related Articles

    [1]Liu Cuishuang, Li Jihong, Niu Muge, Sun Maotong, Liu Yuan, Liu Laishuo, Guo Liyang, Wang Jinnan. Preliminary study on pollen vitality, stigma receptivity and distant hybridization between different genera of Chionanthus retusus[J]. Journal of Beijing Forestry University, 2024, 46(4): 14-27. DOI: 10.12171/j.1000-1522.20230292
    [2]Xia Xi, Gong Rui, Feng Shucheng, Zhang Chunying. Types and quantitative analysis of anthocyanins in F1 hybrid among varieties in Rhododendron subgenus Tsutsusi[J]. Journal of Beijing Forestry University, 2022, 44(5): 105-114. DOI: 10.12171/j.1000-1522.20210060
    [3]Zhang Shuai, Ding Guodong, Gao Guanglei, Sun Guili, Zhao Yuanyuan, Yu Minghan, Cong Zhijie, Bao Yanfeng. Wind tunnel test on windproof benefit of horniness HDPE sand barrier[J]. Journal of Beijing Forestry University, 2020, 42(3): 127-133. DOI: 10.12171/j.1000-1522.20180282
    [4]SUN Hao, LIU Jin-hao, HUANG Qing-qing, ZHAO Ke. Research on the windproof efficiency of polygonal straw sand barrier[J]. Journal of Beijing Forestry University, 2017, 39(10): 90-94. DOI: 10.13332/j.1000-1522.20170173
    [5]LIU Jian-xin, YANG Liu-hui, WEI Dong-xia, YU Xiao-nan. Intrasectional and intersectional cross breeding of Paeonia and karyotype analysis and SSR identification of some hybrids[J]. Journal of Beijing Forestry University, 2017, 39(4): 72-78. DOI: 10.13332/j.1000-1522.20160181
    [6]DANG Xiao-hong, GAO Yong, YU Yi, LI Qian, WANG Shan, WU Hao, WANG Hong-xia, ZHAO Peng-yu. Windproof efficiency with new biodegradable PLA sand barrier and traditional straw sand barrier[J]. Journal of Beijing Forestry University, 2015, 37(3): 118-125. DOI: 10.13332/j.1000-1522.20140245
    [7]ZHAO Xi-yang, ZHANG Zhi-yi. Model construction of seedling growth for hybrid clones of Populus tomentosa.[J]. Journal of Beijing Forestry University, 2013, 35(5): 15-21.
    [8]WEI Zun-zheng, ZHANG Jin-feng, ZHANG De-qiang, LI Dan, WANG Lu, GUO Li-qin.. Immature ovule culture of intersectional hybrids between (Populus tomentosa×P. bolleana) and P. simonii and molecular identification of the hybrid filial generation[J]. Journal of Beijing Forestry University, 2008, 30(5): 73-77.
    [9]LIU Jin-hao, SHU Qing. Virtual prototype of straw-checkerboard sand barriers paving robot and ride comfort[J]. Journal of Beijing Forestry University, 2007, 29(4): 72-74. DOI: 10.13332/j.1000-1522.2007.04.017
  • Cited by

    Periodical cited type(3)

    1. 叶佳伟,高晓磊,周璇,袁德义,邹锋. 攸县油茶远缘杂交亲和性的解剖学研究. 江西农业大学学报. 2024(03): 558-571 .
    2. 刘乐乐,曹效东,徐正茹,张君芳,吴永华. 喜盐鸢尾花部特征与交配系统研究. 草地学报. 2021(12): 2733-2741 .
    3. 苏晓倩,鲍仁蕾,胡凤荣. 不同风信子品种杂交亲和性及胚拯救. 东北林业大学学报. 2019(03): 27-30 .

    Other cited types(7)

Catalog

    Article views (1498) PDF downloads (65) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return