• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Yue, Xu Liying, Wang Yujiao, Yu Jiangbo, Yang Lixue. Characteristics analysis of quantity and spatial structure of standing live and dead trees in Tilia amurensis secondary forest on the west slope of Zhangguangcailing, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 68-79. DOI: 10.12171/j.1000-1522.20190305
Citation: Liu Yue, Xu Liying, Wang Yujiao, Yu Jiangbo, Yang Lixue. Characteristics analysis of quantity and spatial structure of standing live and dead trees in Tilia amurensis secondary forest on the west slope of Zhangguangcailing, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 68-79. DOI: 10.12171/j.1000-1522.20190305

Characteristics analysis of quantity and spatial structure of standing live and dead trees in Tilia amurensis secondary forest on the west slope of Zhangguangcailing, northeastern China

More Information
  • Received Date: September 04, 2019
  • Revised Date: April 09, 2020
  • Available Online: May 17, 2020
  • Published Date: June 30, 2020
  • ObjectiveThe aim of this study was to provide a basis for the growth, protection and management of Tilia amurensis secondary forest by analyzing the quantity and spatial structure characteristics of standing live and dead trees and exploring the growth state, succession process and the main causes of standing dead trees under two disturbance modes (non-cutting and selective cutting).
    MethodThe research was conducted by analyzing the species composition, diameter structure, height structure and spatial structure of standing live and dead trees.
    Result(1) Tilia amurensis, Acer mono, as well as other dominant tree species in living trees also had a dominant position in dead trees in selective cutting stand, while only Tilia amurensis was dominate among the living trees and standing dead trees in non-cutting stand, but Acer mono was only dominate in the living trees, and it was rare in dead standing trees. (2) The standing live and dead trees of the small diameter were dominant in all two stands, and the diameter distribution was roughly inverted J type. The height class distribution of living trees was roughly left-skewed distribution in two stands, while the standing dead trees were inverted J type, meanwhile, the small standing dead trees accounted for a large proportion. Therefore, it could be analyzed that the main reason for the formation of dead trees in the two stands was the competition among trees. (3) The trivariate distribution of spatial structure parameters had shown that there were more dominant living trees, which were randomly distributed, highly mixed and dominant in two stands. Whereas, most of the standing dead trees were randomly distributed, in disadvantaged state, and the surrounding trees were all other tree species or only one was the same tree species. (4) The quadrivariate distribution of spatial structure parameters showed that the standing dead trees of the two stands were randomly distributed in general with good mixture of species and obvious size differentiation. There were three or four standing live trees around one standing dead trees in that state.
    ConclusionIt further indicates that inter-species competition is the main reason for the formation of standing dead trees. This study analyzed the spatial structure and quantitative characteristics of standing live and dead trees in the secondary forest of Tilia amurensis. Therefore it is not only exploring the formation of dead standing trees in the secondary forest, but also provides a theoretical basis for its protection and management.
  • [1]
    惠刚盈, 胡艳波, 徐海, 等. 结构化森林经营[M]. 北京: 中国林业出版社, 2007.

    Hui G Y, Hu Y B, Xu H, et al. Structure-based forest management[M]. Beijing: China Forestry Publishing House, 2007.
    [2]
    Zhang L J, Hui G Y, Hu Y B, et al. Spatial structural characteristics of forests dominated by Pinus tabuliformis Carr.[J/OL]. PLoS ONE, 2018, 13: e0194710 (2018−04−13)[2018−10−22]. https://doi.org/10.1371/journal.pone.0194710.
    [3]
    Sun J, Yu X, Wang H, et al. Effects of forest structure on hydrological processes in China[J]. Journal of Hydrology, 2018, 561(1): 187−199.
    [4]
    Oliver C D, Larson B C. Forest stand dynamics: updated edition[M]. New York: McGraw-Hill Book Company, 1996.
    [5]
    Fang L H, Legendre P, LaFrankie J V, et al. Distribution patterns of tree species in a Malaysian tropical rain forest[J]. Journal of Vegetation Science, 1997, 8(1): 105−114. doi: 10.2307/3237248
    [6]
    欧光龙, 王俊峰, 肖义发, 等. 思茅松天然林单木生物量地理加权回归模型构建[J]. 林业科学研究, 2014, 27(2):213−218.

    Ou G L, Wang J F, Xiao Y F, et al. Modeling individual biomass of Pinus kesiya var. langbianensis natural forests by geo-graphically weighted regression[J]. Forest Research, 2014, 27(2): 213−218.
    [7]
    龚直文, 亢新刚, 顾丽, 等. 天然林林分结构研究方法综述[J]. 浙江林学院学报, 2009, 26(3):434−443.

    Gong Z W, Kang X G, Gu L, et al. Research methods on natural forest stand structure: a review[J]. Journal of Zhejiang Forestry College, 2009, 26(3): 434−443.
    [8]
    Houghton R A. The worldwide extent of land-use change[J]. Bioscience, 1994, 44(5): 305−313. doi: 10.2307/1312380
    [9]
    Dobson A P, Bradshaw A D, Baker A J M. Hopes for the future: restoration ecology and conservation biology[J]. Science, 1997, 277: 515−522. doi: 10.1126/science.277.5325.515
    [10]
    李博, 陈家宽, 沃金森. 植物竞争研究进展[J]. 植物学通报, 1998, 15(4):18−29.

    Li B, Chen J K, Watkinson A R. A literature review on plant competition[J]. Chinese Bulletin of Botany, 1998, 15(4): 18−29.
    [11]
    段仁燕, 王孝安. 太白红杉种内和种间竞争研究[J]. 植物生态学报, 2005, 29(2):242−250. doi: 10.3321/j.issn:1005-264X.2005.02.009

    Duan R Y, Wang X A. Intraspecific and interspecific competition in Larix chinensis[J]. Acta Phytoecologica Sinica, 2005, 29(2): 242−250. doi: 10.3321/j.issn:1005-264X.2005.02.009
    [12]
    Franklin J F, Shugart H H, Harmon M E, et al. Tree death as an ecological process: the causes, consequences, and variability of tree mortality[J]. Bioscience, 1987, 37(8): 550−556. doi: 10.2307/1310665
    [13]
    Jonsson B, Kruys N, Ranius T, et al. Ecology of species living on dead wood-lessons for dead wood management[J]. Silva Fennica, 2005, 39(2): 289−309.
    [14]
    Siitonen J. Ecology of woody debris in boreal forests forest management, coarse woody debris and saproxylic organisms: fennoscandian boreal forests as an example[J]. Ecological Bulletins, 2001 , 51(49): 11−21.
    [15]
    Harmon M E, Franklin J F, Swanson F J, et al. Role of coarse woody debris in temperate ecosystems[J]. Advances in Ecological Research, 2004, 34(15): 159−234.
    [16]
    Harmon M E. Carbon sequestration in forests: addressing the scale question[J]. Journal of Forestry, 2001, 99(4): 24−29.
    [17]
    Zielonka T. When does dead wood turn into a substrate for spruce replacement?[J]. Journal of Vegetation Science, 2006, 17(6): 739−746. doi: 10.1111/j.1654-1103.2006.tb02497.x
    [18]
    Lachat T, Brang P, Bolliger M, et al. Totholz im wald: entstehung, bedeutung und förderung[J]. Merkbl Prax, 2014, 52(1): 1−12.
    [19]
    Junninen K, Simila M, Kouki J, et al. Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia[J]. Ecography, 2006, 29(1): 75−83. doi: 10.1111/j.2005.0906-7590.04358.x
    [20]
    Ódor P, Heilmann-Clausen J, Christensen M, et al. Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe[J]. Biological Conservation, 2006, 131(1): 58−71. doi: 10.1016/j.biocon.2006.02.004
    [21]
    Uliczka H, Angelstam P. Assessing conservation values of forest stands based on specialised lichens and birds[J]. Biological Conservation, 2000, 95(3): 343−351. doi: 10.1016/S0006-3207(00)00022-7
    [22]
    Similä M, Kouki J, Martikainen P, et al. Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters[J]. Forest Ecology and Management, 2003, 174(1−3): 365−381. doi: 10.1016/S0378-1127(02)00061-0
    [23]
    Sverdrup-Thygeson A, Gustafsson L, Kouki J, et al. Spatial and temporal scales relevant for conservation of dead-wood associ-ated species: current status and perspectives[J]. Biodiversity and Conservation, 2014, 23(3): 513−535. doi: 10.1007/s10531-014-0628-3
    [24]
    Heilmann-Clausen J, Christensen M. Fungal diversity on decaying beech logs: implications for sustainable forestry[J]. Biodiversity and Conservation, 2003, 12(5): 953−973. doi: 10.1023/A:1022825809503
    [25]
    Heilmann-Clausen J, Aude E, Christensen M, et al. Cryptogam communities on decaying deciduous wood: does tree species diversity matter?[J]. Biodiversity and Conservation, 2005, 14(9): 2061−2078. doi: 10.1007/s10531-004-4284-x
    [26]
    Müller J, Bütler R. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests[J]. European Journal of Forest Research, 2010, 129(6): 981−992. doi: 10.1007/s10342-010-0400-5
    [27]
    国家林业局. 国家重点保护野生植物名录(第一批)[J]. 植物杂志, 1999(5):4−11.

    State Administration of Forestry. List of national key protected wild plant (first batch)[J]. Journal of Plants, 1999(5): 4−11.
    [28]
    Dale M R T, Gibson D J. Spatial pattern analysis in plant ecology[J]. Quarterly Review of Biology, 2002, 15(1): 195−196.
    [29]
    唐杨, 陈红, 童跃伟, 等. 长白山阔叶红松林不同强度择伐后关键树种的竞争关系[J]. 应用生态学报, 2019, 30(5):1469−1478.

    Tang Y, Chen H, Tong Y W, et al. Competition of key tree species with selective cutting at different intensities in broadleaved-Korean pine mixed forest in the Changbai Mountain, China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1469−1478.
    [30]
    许梅, 董树斌, 张德怀, 等. 北京市紫椴种群空间分布格局研究[J]. 西北农林科技大学学报(自然科学版), 2017, 45(8):81−88.

    Xu M, Dong S B, Zhang D H, et al. Study on spatial distribution pattern of Tilia amurensis population in Beijing[J]. Journal of Northwest A & F University, 2017, 45(8): 81−88.
    [31]
    张东来, 张玲. 帽儿山林区紫椴群落物种多样性、种间关系及对环境因子的响应[J]. 森林工程, 2015, 31(6):41−44, 166. doi: 10.3969/j.issn.1001-005X.2015.06.009

    Zhang D L, Zhang L. atudy on species diversity, interspecific association and response to environmental factors of Tilia amurensis community in Maoer Mountain[J]. Forest Engineering, 2015, 31(6): 41−44, 166. doi: 10.3969/j.issn.1001-005X.2015.06.009
    [32]
    殷东生, 葛文志, 张凤海, 等. 色木槭天然次生林种群竞争关系研究[J]. 植物研究, 2012, 32(1):105−109. doi: 10.7525/j.issn.1673-5102.2012.01.005

    Yin D S, Ge W Z, Zhang F H, et al. Competition relationship of populations of natural secondary Acer mono forest[J]. Bulletin of Botanical Research, 2012, 32(1): 105−109. doi: 10.7525/j.issn.1673-5102.2012.01.005
    [33]
    赵中华, 刘灵, 王宏翔, 等. 红花尔基沙地樟子松天然林枯立木特征分析[J]. 林业科学研究, 2017, 30(5):788−796.

    Zhao Z H, Liu L, Wang H X, et al. Dead standing trees characteristics analysis of Pinus sylvestris var. mongolica natural forest in Honghuaerji[J]. Forest Research, 2017, 30(5): 788−796.
    [34]
    张岗岗, 刘瑞红, 惠刚盈, 等. 林分空间结构参数N元分布及其诠释: 以小陇山锐齿栎天然混交林为例[J]. 北京林业大学学报, 2019, 41(4):21−31.

    Zhang G G, Liu R H, Hui G Y, et al. N-variate distribution and its annotation on forest spatial structural parameters: a case study of Quercus aliena var. acuteserrata natural mixed forest in Xiaolong Mountains, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 21−31.
    [35]
    Pommerening A. Evaluating structural indices by reversing forest structural analysis[J]. Forest Ecology and Management, 2006, 224(3): 266−277. doi: 10.1016/j.foreco.2005.12.039
    [36]
    陈亚南, 杨华, 马士友, 等. 长白山2种针阔混交林空间结构多样性研究[J]. 北京林业大学学报, 2015, 37(12):48−58.

    Chen Y N, Yang H, Ma S Y, et al. Spatial structure diversity of semi-natural and plantation stands of Larix gmelini in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(12): 48−58.
    [37]
    汤孟平, 娄明华, 陈永刚, 等. 不同混交度指数的比较分析[J]. 林业科学, 2012, 48(8):46−53. doi: 10.11707/j.1001-7488.20120808

    Tang M P, Lou M H, Chen Y G, et al. Comparative analyses on different mingling indices[J]. Scientia Silvae Sinicae, 2012, 48(8): 46−53. doi: 10.11707/j.1001-7488.20120808
    [38]
    王宏翔. 天然林林分空间结构的二阶特征分析[D]. 北京: 中国林业科学研究院, 2017.

    Wang H X. Analysis of second-order characteristics of stand spatial structure of natural forests[D]. Beijing: Chinese Academy of Forestry, 2017.
    [39]
    万盼. 经营方式对甘肃小陇山锐齿栎天然林林分质量的影响[D]. 北京: 中国林业科学研究院, 2018.

    Wan P. Impacts of forest management methods on stand quality of natural Quercus aliena var. acuteserrata forest in Xiaolongshan, Gansu Province[D]. Beijing: Chinese Academy of Forestry Sciences, 2018.
    [40]
    白超. 空间结构参数及其在锐齿栎天然林结构动态分析中的应用[D]. 北京: 中国林业科学研究院, 2016.

    Bai C. Spatial structure parameters and the application on studying structure dynamics of natural Quercus aliena var. acuteserrata forest[D]. Beijing: Chinese Academy of Forestry Sciences, 2016.
    [41]
    卢志军, 鲍大川, 郭屹立, 等. 八大公山中亚热带山地常绿落叶阔叶混交林物种组成与结构[J]. 植物科学学报, 2013, 31(4):336−344. doi: 10.3724/SP.J.1142.2013.40336

    Lu Z J, Bao D C, Guo Y L, et al. Community composition and structure of Badagongshan (BDGS) forest dynamic plot in a mid-subtropical mountain evergreen and deciduous broadleaved mixed forest, central China[J]. Plant Science Journal, 2013, 31(4): 336−344. doi: 10.3724/SP.J.1142.2013.40336
    [42]
    Iida Y, Kohyama T S, Kubo T, et al. Tree architecture and life - history strategies across 200 co-occurring tropical tree species[J]. Functional Ecology, 2011, 25(6): 1260−1268. doi: 10.1111/j.1365-2435.2011.01884.x
    [43]
    马芳, 王顺忠, 冯金朝, 等. 北京东灵山暖温带落叶阔叶林枯立木与活立木空间分布格局[J]. 生态学报, 2018, 38(16):5717−5725.

    Ma F, Wang S Z, Feng J C, et al. Spatial distribution patterns of snag and standing trees in awarm temperate deciduous broadleaved forest in Dongling Mountain, Beijing[J]. Acta Ecologica Sinica, 2018, 38(16): 5717−5725.
    [44]
    陆龙龙. 长白山林区阔叶红松林不同演替阶段群落结构特征研究[D]. 吉林: 北华大学, 2019.

    Lu L L. Study on community structure characteristics of different succession stages of broadleaved Korean pine forest in Changbai Mountain[D]. Jilin: Beihua University, 2019.
    [45]
    Bond-Lamberty B, Wang C, Gower S T, et al. Corrigendum: aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba[J]. Canadian Journal of Forest Research, 2014, 32(8): 1441−1450.
    [46]
    Fraver S, Jonsson B G, Jönsson M, et al. Demographics and disturbance history of a boreal old-growth Picea abies forest[J]. Journal of Vegetation Science, 2008, 19: 789−798. doi: 10.3170/2008-8-18449
    [47]
    Eskelson B N I, Temesgen H, Hagar J C, et al. A comparison of selected parametric and imputation methods for estimating snag density and snag quality attributes[J]. Forest Ecology and Management, 2012, 272: 26−30. doi: 10.1016/j.foreco.2011.06.041
    [48]
    Morris E C. Effect of localized placement of nutrients on root competition in selfthinning populations[J]. Annals of Botany, 1999, 78(3): 353−364.
    [49]
    Silvertown J W. Introduction to plant population ecology[M]. New York: Longman Scientific and Technical, 1993.
    [50]
    Ogawa K. Time-trajectory of mean phytomass and density during a course of self-thinning in a sugi (Cryptomeria japonica D. Don) plantation[J]. Forest Ecology and Management, 2005, 214(1): 104−110.
    [51]
    Ogawa K. Relationships between mean shoot and root masses and density in an overcrowded population of hinoki (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) seedlings[J]. Forest Ecology and Management, 2005, 213(1−3): 391−398. doi: 10.1016/j.foreco.2005.04.005
    [52]
    周永斌, 殷有, 殷鸣放, 等. 白石砬子国家级自然保护区天然林的自然稀疏[J]. 生态学报, 2011, 31(21):6469−6480.

    Zhou Y B, Yin Y, Yin M F, et al. Self-thinning of natural broadleaved forests in Baishilazi Nature Reserve[J]. Acta Ecologica Sinica, 2011, 31(21): 6469−6480.
    [53]
    Escandón A B, Susana P, Rojas R K, et al. Sprouting extends the regeneration niche in temperate rain forests: the case of the long-lived tree Eucryphia cordifolia[J]. Forest Ecology and Management, 2013, 310(1): 321−326.
    [54]
    Travaini A, Delibes M, Ferreras P, et al. Diversity, abundance or rare species as a target for the conservation of mammalian carnivores: a case study in southern Spain[J]. Biodivers Conserv, 1997, 6(4): 529−535. doi: 10.1023/A:1018329127772
  • Related Articles

    [1]Mei Xuesong, Dong Lingbo, Chen Guanmou. Driving factors of carbon sink in natural Larix gmelinii forests based on structural equation models[J]. Journal of Beijing Forestry University, 2024, 46(9): 1-10. DOI: 10.12171/j.1000-1522.20230284
    [2]Wu Yan, Li Xinyu, Zhang Yiting, Ding Bo, Zhang Yunlin, Fu Yuhong, Liu Xun. Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 87-94. DOI: 10.12171/j.1000-1522.20220052
    [3]Xu Chao, Long Ting, Wu Xinlei, Chen Jie, Liang Yanjun, Li Jingwen. Reintroducing effects and influencing factors of Taxus cuspidata population[J]. Journal of Beijing Forestry University, 2020, 42(8): 34-42. DOI: 10.12171/j.1000-1522.20190423
    [4]Gao Yan, Zhang Yuqing, Qin Shugao, Zhang Jutao, Liu Zhen. Landscape pattern change and its influencing factors of sand-binding vegetation[J]. Journal of Beijing Forestry University, 2020, 42(4): 102-112. DOI: 10.12171/j.1000-1522.20190061
    [5]He Xiao, Cao Lei, Xu Shenglin, Li Haikui. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 50-58. DOI: 10.13332/j.1000-1522.20190030
    [6]ZHOU Wen-jun, SHA Li-qing, ZHANG Yi-ping, SONG Qing-hai, LIU Yun-tong, DENG Yun, DENG Xiao-bao. Characteristics and influencing factors of soil dissolved organic carbon and nitrogen in a tropical seasonal rainforest in Xishuangbanna,Southwest China.[J]. Journal of Beijing Forestry University, 2016, 38(9): 34-41. DOI: 10.13332/j.1000-1522.20150238
    [7]LI Ning, CHEN Li-hua, YANG Yuan-jun.. Factors influencing root tensile properties of Pinus tabuliformis and Larix principis-rupprechtii.[J]. Journal of Beijing Forestry University, 2015, 37(12): 77-84. DOI: 10.13332/j.1000-1522.20150131
    [8]CHEN Chong, LI Ji-yue, , WANG Yu- tao. Variation of stem sap flow of Salix matsudana and its impact factors.[J]. Journal of Beijing Forestry University, 2008, 30(4): 82-88.
    [9]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [10]JIAO Wen-jun, ZHU Qing-ke, ZHANG Yu-qing, WU Xiu-qin, WANG Na. Distribution of biotic crusts and its influencing factors in the grain-for-green land of the loess region, northern Shaanxi Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 102-107. DOI: 10.13332/j.1000-1522.2007.01.018
  • Cited by

    Periodical cited type(34)

    1. 孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
    2. 裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
    3. 贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
    4. 张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
    5. 罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
    6. 张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
    7. 廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
    8. 贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
    9. 李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
    10. 王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
    11. 孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
    12. 岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
    13. 徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
    14. 杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
    15. 刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
    16. 王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
    17. 谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
    18. 吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
    19. 陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
    20. 王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
    21. 童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
    22. 苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
    23. 刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
    24. 孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
    25. 张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
    26. 林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
    27. 林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
    28. 姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
    29. 林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
    30. 阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
    31. 林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
    32. 赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
    33. 李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
    34. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(26)

Catalog

    Article views (1731) PDF downloads (73) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return