• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Bo, Han Shuwen, Wu Yingda, Niu Shukui, Liu Xiaodong. Forest regeneration of Pinus tabuliformis burned area in Liaoheyuan Nature Reserve of northern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 41-50. DOI: 10.12171/j.1000-1522.20190315
Citation: Wang Bo, Han Shuwen, Wu Yingda, Niu Shukui, Liu Xiaodong. Forest regeneration of Pinus tabuliformis burned area in Liaoheyuan Nature Reserve of northern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 41-50. DOI: 10.12171/j.1000-1522.20190315

Forest regeneration of Pinus tabuliformis burned area in Liaoheyuan Nature Reserve of northern China

More Information
  • Received Date: July 30, 2019
  • Revised Date: October 08, 2019
  • Available Online: October 18, 2019
  • Published Date: April 26, 2020
  • ObjectiveFrom the four aspects of tree species composition, density, growth character (base diameter, plant height, crown diameter) and spatial distribution pattern, the forest characteristics of Pinus tabuliformis plantation in Liaoheyuan Nature Reserve of northern China were discussed, which could provide reference for vegetation restoration and forest management.
    MethodTaking the Pinus tabuliformis plantation in burned area of Liaoheyuan Nature Reserve as research object, three 20 m × 20 m sample plots were set separately according to different renewal methods (natural renewal and artificial promoting natural renewal) under severe fire, different fire intensities (severe fire, moderate fire and light fire) under natural renewal and control (not burned). The natural renewal sample land under severe fire was the same as severe fire land under natural renewal, so there were 15 sample plots in total. We investigated the amount and type of trees after updating, measured the ground diameter, plant height, crown diameter of renewed trees. For each wood gauging sample, we recorded the information such as the geographic coordinates and site factor. Single factor variance analysis was used to analyze the difference of tree regeneration density and growth character, and variance/mean method was used to analyze the spatial distribution pattern of tree regeneration.
    Result(1) The tree species of tree regeneration in the burned area of Pinus tabuliformis were mainly Quercus mongolica and Populus davidiana, accounting for 38.1% and 42.3% of all regenerated trees, respectively, also including Pinus tabuliformis, Ulmus laciniata, Ulmus macrocarpa, Ulmus pumila, Acer mono, etc. Under severe fire, there was a significant difference in the density of tree regeneration between different renewal methods (P < 0.05), there was no significant difference in the density of tree regeneration between different fire intensities under natural renewal (P > 0.05). (2) There was no significant difference in the growth traits and characteristics of all tree regeneration in different regeneration modes under severe fire (P > 0.05), there was an extremely significant difference in the growth traits of all tree regeneration under natural renewal with different fire intensities (P < 0.01). (3) The spatial distribution pattern of tree regeneration was affected by fire intensity, regeneration mode and tree species. The factors such as suitable microhabitat, animal carried seed diffusion can promote the small scale aggregation of renewal.
    Conclusion4 years after fire, the regenerated tree species in the burned area of Pinus tabuliformis forest were mainly Quercus mongolica and Populus davidiana. Moderate and low intensity surface fire could promote the natural regeneration of stands. Adopting salvage logging and other management measures to artificially promote natural renewal can speed up the restoration of vegetation in fire area.
  • [1]
    刘晓东, 王博. 森林燃烧主要排放物研究进展[J]. 北京林业大学学报, 2017, 39(12):118−124.

    Liu X D, Wang B. Review on the main emission products released by forest combustion[J]. Journal of Beijing Forestry University, 2017, 39(12): 118−124.
    [2]
    蔡文华, 杨健, 刘志华, 等. 黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子[J]. 生态学报, 2012, 32(11):3303−3312.

    Cai W H, Yang J, Liu Z H, et al. Controls of post-fire tree recruitment in Great Xing ’an Mountains in Heilongjiang Province[J]. Acta Ecologica Sinica, 2012, 32(11): 3303−3312.
    [3]
    Ahn Y S, Ryu S R, Joohoon L. Effects of forest fires on forest ecosystems in eastern coastal areas of Korea and an overview of restoration projects[J]. Landscape and Ecological Engineering, 2014, 10(1): 229−237. doi: 10.1007/s11355-013-0212-0
    [4]
    王鼎. 大兴安岭兴安落叶松林火烧迹地植被群落特征研究[D]. 呼和浩特: 内蒙古农业大学, 2016.

    Wang D. Study on characteristics of plant communities at burned area of Daxing ’an Mountains[D]. Hohhot: Inner Mongolia Agricultural University, 2016.
    [5]
    梁瑞云, 黄茹, 李旭光, 等. 火干扰对北碚茅庵林场天然更新幼苗发生及存活的影响[J]. 西南大学学报(自然科学版), 2013, 35(8):6−12.

    Liang R Y, Huang R, Li X G, et al. The effect of fire disturbance on natural regeneration of plant seedlings in Maoan Forestry Farm of Beibei[J]. Journal of Southwest University (Natural Science Edition), 2013, 35(8): 6−12.
    [6]
    曹慧. 火烧对油松天然林林下植被及土壤的影响[D]. 太谷: 山西农业大学, 2016.

    Cao H. Influenced on the Pinus tabuliformis natural forest vegetation and soil after burned[D]. Taigu: Shanxi Agricultural University, 2016.
    [7]
    王鼎, 周梅, 赵鹏武, 等. 不同更新方式对兴安落叶松林火烧迹地物种组成及多样性的影响[J]. 生态环境学报, 2017, 26(4):570−575.

    Wang D, Zhou M, Zhao P W, et al. Study on species composition and diversity of burned phytocoenosium after different regenerate modes[J]. Ecology and Environmental Sciences, 2017, 26(4): 570−575.
    [8]
    Heil L J, Burkle L A. Recent post-wildfire salvage logging benefits local and landscape floral and bee communities[J]. Forest Ecology and Management, 2018, 424: 267−275. doi: 10.1016/j.foreco.2018.05.009
    [9]
    李红, 杨树军, 刘敏, 等. 不同疏伐密度对油松天然更新的影响[J]. 防护林科技, 2018(3):6−7, 25.

    Li H, Yang S J, Liu M, et al. Effect of different thinning density on natural regeneration of Pinus tabuliformis[J]. Protection Forest Science and Technology, 2018(3): 6−7, 25.
    [10]
    闫海冰, 韩有志, 杨秀清, 等. 华北山地典型天然次生林群落的树种空间分布格局及其关联性[J]. 生态学报, 2010, 30(9):2311−2321.

    Yan H B, Han Y Z, Yang X Q, et al. Spatial distribution patterns and associations of tree species in typical natural secondary mountain forest communities of northern China[J]. Acta Ecologica Sinica, 2010, 30(9): 2311−2321.
    [11]
    刘铁岩, 毕君, 王超, 等. 冀北山地油松人工林天然更新研究[J]. 中南林业科技大学学报, 2017, 37(7):55−58, 65.

    Liu T Y, Bi J, Wang C, et al. Study on the natural regeneration of Pinus tabuliformis plantation in the northern mountain of Hebei Province[J]. Journal of Central South University of Forestry & Technology, 2017, 37(7): 55−58, 65.
    [12]
    喻泓, 杨晓晖, 慈龙骏. 地表火对红花尔基沙地樟子松种群空间分布格局的影响[J]. 植物生态学报, 2009, 33(1):71−80. doi: 10.3773/j.issn.1005-264x.2009.01.008

    Yu H, Yang X H, Ci L J. Variations of spatial pattern in fire-mediated Mongolian pine forest, Hulunbuir sand region, Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2009, 33(1): 71−80. doi: 10.3773/j.issn.1005-264x.2009.01.008
    [13]
    张旭, 李家湘, 喻勋林, 等. 湖南大围山杜鹃灌丛木本植物种群空间格局[J]. 生态学杂志, 2009, 33(1):71−80.

    Zhang X, Li J X, Yu X L, et al. Spatial patterns of woody species in Rhododendron simsii shrubland at Daweishan, Hunan Province[J]. Chinese Journal of Ecology, 2009, 33(1): 71−80.
    [14]
    李连强, 牛树奎, 陶长森, 等. 妙峰山油松林分结构与地表潜在火行为相关性分析[J]. 北京林业大学学报, 2019, 41(1):73−81.

    Li L Q, Niu S K, Tao C S, et al. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73−81.
    [15]
    黄萍, 刘艳红. 北京松山油松林林分结构和地形对幼苗更新的影响[J]. 生态学杂志, 2018, 37(4):1003−1009.

    Huang P, Liu Y H. Effects of stand structure and terrain factors on seedling regeneration of Pinus tabuliformis forest in the Songshan National Nature Reserve, Beijing[J]. Chinese Journal of Ecology, 2018, 37(4): 1003−1009.
    [16]
    褚燕琴, 牛树奎, 陈锋, 等. 火干扰及环境因子对油松林林下植被的影响[J]. 浙江农林大学学报, 2017, 34(1):96−103. doi: 10.11833/j.issn.2095-0756.2017.01.014

    Chu Y Q, Niu S K, Chen F, et al. Fire disturbance and environmental factors for the undergrowth in a Pinus tabuliformis forest[J]. Journal of Zhejiang A&F University, 2017, 34(1): 96−103. doi: 10.11833/j.issn.2095-0756.2017.01.014
    [17]
    倪宝龙, 刘兆刚. 不同强度火干扰下盘古林场天然落叶松林的空间结构[J]. 生态学报, 2013, 33(16):4975−4984.

    Ni B L, Liu Z G. A dynamic analysis of spatial distribution pattern ofLarix gmelinii natural forest in Pangu Farm under varying intensity of fire disturbance[J]. Acta Ecologica Sinica, 2013, 33(16): 4975−4984.
    [18]
    刘冠宏, 李炳怡, 宫大鹏, 等. 林火对北京平谷区油松林土壤化学性质的影响[J]. 北京林业大学学报, 2019, 41(2):29−40.

    Liu G H, Li B Y, Gong D P, et al. Effects of forest fire on soil chemical properties of Pinus tabuliformis forest in Pinggu District of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(2): 29−40.
    [19]
    Torres I, Pérez B, Quesada J, et al. Forest shifts induced by fire and management legacies in a Pinus pinaster woodland[J]. Forest Ecology and Management, 2016, 361: 309−317. doi: 10.1016/j.foreco.2015.11.027
    [20]
    Heil L J, Burkle L A. The effects of post-wildfire salvage logging on plant reproductive success and pollination in Symphoricarpos albus, a fire-tolerant shrub[J]. Forest Ecology and Management, 2019, 432: 157−163. doi: 10.1016/j.foreco.2018.09.013
    [21]
    Swanson M E, Franklin J F, Beschta R L, et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites[J]. Frontiers in Ecology and the Environment, 2011, 9(2): 117−125. doi: 10.1890/090157
    [22]
    Boucher D, Gauthier S, Josée N, et al. Salvage logging affects early post-fire tree composition in Canadian boreal forest[J]. Forest Ecology and Management, 2014, 325: 118−127. doi: 10.1016/j.foreco.2014.04.002
    [23]
    Agee J K, Skinner C N. Basic principles of forest fuel reduction treatments[J]. Forest Ecology and Management, 2005, 211(1−2): 83−96. doi: 10.1016/j.foreco.2005.01.034
    [24]
    Derose R J, Long J N. Resistance and resilience: a conceptual framework for silviculture[J]. Forest Science, 2014, 60(6): 1205−1212. doi: 10.5849/forsci.13-507
    [25]
    Johnstone J F, Hollingsworth T N, Chapin F S, et al. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest[J]. Global Change Biology, 2010, 16(4): 1281−1295. doi: 10.1111/j.1365-2486.2009.02051.x
    [26]
    张立志, 孙亚娟, 宋银平, 等. 不同强度林火干扰对红花尔基樟子松天然林更新的影响[J]. 防护林科技, 2015(5):16−19.

    Zhang L Z, Sun Y J, Song Y P, et al. Effects of fire disturbance with different intensities on regeneration of natural forest of Pinus sylvestris var. mongolica in Honghuaerji Region[J]. Protection Forest Science and Technology, 2015(5): 16−19.
    [27]
    Johnstone J F, Chapin F S. Effects of soil burn severity on post-fire tree recruitment in boreal forest[J]. Ecosystems, 2006, 9(1): 14−31. doi: 10.1007/s10021-004-0042-x
    [28]
    Macdonald S E, Haeussler S, Domenicano S, et al. The reduction of organic-layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed[J]. Canadian Journal of Forest Research, 2007, 37(6): 1012−1023. doi: 10.1139/X06-245
    [29]
    Jayen K, Leduc A, Bergeron Y. Effect of fire severity on regeneration success in the boreal forest of northwest Québec, Canada[J]. Écoscience, 2006, 13(2): 143−151. doi: 10.2980/i1195-6860-13-2-143.1
    [30]
    孙家宝. 火干扰后大兴安岭兴安落叶松林群落动态研究[D]. 哈尔滨: 东北林业大学, 2010.

    Sun J B. The dynamic study on plant community of Larix gmelinii in Daxing ’an Mountain after fire disturbance[D]. Harbin: Northeast Forestry University, 2010.
    [31]
    Connell J H. Diversity in tropical rainforests and coral reefs[J]. Science, 1978, 199: 1302−1310. doi: 10.1126/science.199.4335.1302
    [32]
    Greene D F, Gauthier S, Noël J, et al. A field experiment to determine the effect of post-fire salvage on seedbeds and tree regeneration[J]. Frontiers in Ecology and the Environment, 2006, 4(2): 69−74. doi: 10.1890/1540-9295(2006)004[0069:AFETDT]2.0.CO;2
    [33]
    Hernández-Hernández R, Jorge C, Marcelino A A, et al. Post-fire salvage logging imposes a new disturbance that retards succession: the case of bryophyte communities in a Macaronesian laurel forest[J]. Forests, 2017, 8(7): 252. doi: 10.3390/f8070252
    [34]
    Lindenmayer D B, Burton P J, Franklin J F. Salvage logging and its ecological consequences[M] . Washington:Island Press, 2008.
    [35]
    Fernandes P, Máguas C, Correia O. Combined effects of climate, habitat, and disturbance on seedling establishment of Pinus pinaster and Eucalyptus globulus[J]. Plant Ecology, 2017, 218(5): 501−515. doi: 10.1007/s11258-017-0706-1
    [36]
    Hopkins T, Larson A J, Belote R T. Contrasting effects of wildfire and ecological restoration in old-growth western larch forests[J]. European Journal of Marketing, 2014, 60(5): 1005−1013.
    [37]
    Splawinski T B, Gauthier S, Bergeron Y, et al. A landscape-level tool for assessing natural regeneration density of Picea mariana and Pinus banksiana following fire and salvage logging[J]. Forest Ecology and Management, 2016, 373: 189−202. doi: 10.1016/j.foreco.2016.04.036
    [38]
    Greene D F, Splawinski T B, Gauthier S, et al. Seed abscission schedules and the timing of post-fire salvage of Picea mariana and Pinus banksian[J]. Forest Ecology and Management, 2013, 303: 20−24. doi: 10.1016/j.foreco.2013.03.049
    [39]
    Marzano R, Garbarino M, Marcolin E, et al. Deadwood anisotropic facilitation on seedling establishment after a stand-replacing wildfire in Aosta Valley (NW Italy)[J]. Ecological Engineering, 2013, 51: 117−122. doi: 10.1016/j.ecoleng.2012.12.030
    [40]
    Lesser M R, Jackson S T, Nathan R. Contributions of long-distance dispersal to population growth in colonizing Pinus ponderosa populations[J]. Ecology Letters, 2013, 16(3): 380−389. doi: 10.1111/ele.12053
    [41]
    Ozawa H A, Watanabe A, Uchiyama K, et al. Influence of long-distance seed dispersal on the genetic diversity of seed rain in fragmented Pinus densiflora populations relative to pollen-mediated gene flow[J]. Journal of Heredity, 2013, 104(4): 465−475. doi: 10.1093/jhered/est022
    [42]
    Owen S M, Sieg C H, Meador S, et al. Spatial patterns of ponderosa pine regeneration in high-severity burn patches[J]. Forest Ecology and Management, 2017, 405: 134−149. doi: 10.1016/j.foreco.2017.09.005
    [43]
    Pesendorfer M B, Sillett T S, Koenig W D, et al. Scatter-hoarding corvids as seed dispersers for oaks and pines: a review on a widely distributed mutualism and its utility to habitat restoration[J]. The Condor, 2016, 118(2): 215−237. doi: 10.1650/CONDOR-15-125.1
    [44]
    Dunn C J, Bailey J D. Modeling the direct effects of salvage logging on long-term temporal fuel dynamics in dry-mixed conifer forests[J]. For Ecol Manage, 2015, 341: 93−109. doi: 10.1016/j.foreco.2015.01.002
  • Related Articles

    [1]Xu Xinghua, Huang Qilun, Li Shanwen, Meng Xianwei, Li Zongtai, Qiao Yanhui, Dong Yufeng, Zhang Zhiyi. Creation and comprehensive evaluation of Populus deltoides germplasm resources[J]. Journal of Beijing Forestry University, 2024, 46(8): 79-86. DOI: 10.12171/j.1000-1522.20220101
    [2]Liang Qinglan, Han Youji, Qiao Yanhui, Xie Kongan, Li Shuangyun, Dong Yufeng, Li Shanwen, Zhang Shengxiang. Effects of drought stress on the growth and physiological characteristics of Sect. Aigeiros clones[J]. Journal of Beijing Forestry University, 2023, 45(10): 81-89. DOI: 10.12171/j.1000-1522.20220266
    [3]Yang Bingbing, Yao Xiaohua, Zhang Chengcai, Shao Weizhong, Yang Yuchen, Liu Linxiu. Comprehensive evaluation of seed and fruit traits of thin shell of pecan clones[J]. Journal of Beijing Forestry University, 2023, 45(5): 57-66. DOI: 10.12171/j.1000-1522.20210323
    [4]Li Jiahui, Peng Zuodeng, Liu Yong. Phenotypic difference and comprehensive evaluation of Sophora japonica in Beijing urban area[J]. Journal of Beijing Forestry University, 2022, 44(6): 23-33. DOI: 10.12171/j.1000-1522.20210013
    [5]Pan Yanyan, Liang Deyang, Guo Jing, Wang Fang, Wang Fuwei, Li Shuchun, Zhao Xiyang. Variance analyses on growth traits of Larix kaempferi in different seed sources[J]. Journal of Beijing Forestry University, 2018, 40(11): 19-27. DOI: 10.13332/j.1000-1522.20170478
    [6]YANG Chuan-bao, SUN Chao, LI Shan-wen, YAO Jun-xiu, LIU Jing-guo, JIAO Xing-jie. Comprehensive evaluation and screening of salt tolerance for Leuce clones at nursery stage[J]. Journal of Beijing Forestry University, 2017, 39(10): 24-32. DOI: 10.13332/j.1000-1522.20170323
    [7]ZHANG Tian, ZHU Yu-jie, DONG Xi-bin. Effects of thinning on the habitat of natural mixed broadleaf-conifer secondary forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 1-12. DOI: 10.13332/j.1000-1522.20170187
    [8]XIONG Ya-yun, XIA Wen-tong, WANG Jing, LIU Yan, PAN Wan-chun. Comprehensive evaluation and screening of tulip cultivars based on their ornamental value and reuse of bulbs.[J]. Journal of Beijing Forestry University, 2015, 37(1): 107-121. DOI: 10.13332/j.cnki.jbfu.2015.01.010
    [9]GUO Su-juan, L&Uuml, Wen-jun, ZOU Feng, XIE Peng. Comprehensive evaluation and screening of different pollination combinations of chestnut based on different evaluation methods[J]. Journal of Beijing Forestry University, 2013, 35(6): 42-47.
    [10]WANG Yuan, WU Ze-min, ZHANG Hao, ZHAO Xia. Landscape pattern analysis and comprehensive assessment of urban forest in the three districts of Maanshan City based on RS and GIS[J]. Journal of Beijing Forestry University, 2008, 30(4): 46-52.
  • Cited by

    Periodical cited type(2)

    1. 柳璎珊,应玥,彭嫔嫔,骆剑锋,李志红,张威,舒金平. 不同寄主源栎实象共生细菌多样性. 生态学杂志. 2025(02): 460-470 .
    2. 赵秋玲,张晶,王大伟,陈奕蓉. 不同种群锐齿槲栎种子形态特征与营养成分变异分析. 西部林业科学. 2024(05): 8-15 .

    Other cited types(0)

Catalog

    Article views (2553) PDF downloads (132) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return