• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Gao Linhao, Sun Han, Bai Xueqia, Dai Shuang, Fan Yanwen, Liu Chao, Wang Xiangping, Yin Weilun. Effects of climate and phylogeny on the relationship between specific leaf area and leaf element concentration of trees and shrubs in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(2): 19-30. DOI: 10.12171/j.1000-1522.20190320
Citation: Gao Linhao, Sun Han, Bai Xueqia, Dai Shuang, Fan Yanwen, Liu Chao, Wang Xiangping, Yin Weilun. Effects of climate and phylogeny on the relationship between specific leaf area and leaf element concentration of trees and shrubs in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(2): 19-30. DOI: 10.12171/j.1000-1522.20190320

Effects of climate and phylogeny on the relationship between specific leaf area and leaf element concentration of trees and shrubs in Changbai Mountain of northeastern China

More Information
  • Received Date: September 04, 2019
  • Revised Date: December 10, 2019
  • Available Online: January 13, 2020
  • Published Date: March 02, 2020
  • ObjectiveSpecific leaf area (SLA) is a key functional trait of plants. It is affected by climate and phylogeny, and is closely associated with leaf element concentration. Therefore, the relationships between SLA and the abiotic and biotic factors are useful for understanding the strategies of plants in adaptation to environment and resource utilization. Meanwhile, trees and shrubs belong to different life forms, so we need to examine whether they differ in adaptation strategies related to SLA.
    MethodThis study was based on the comparison of dominant tree and understory shrub species in sample plots along the altitudinal gradient of Changbai Mountain, northeastern China. We established a phylogenetic tree using DNA barcode sequences, and analyzed the relationships of SLA with leaf element concentrations, climatic factors and phylogeny. We examined whether the relationships between SLA and leaf element concentrations, and the influence of climate and phylogeny, were different between trees and shrubs.
    Result(1) The SLA of trees and shrubs was negatively correlated with mean annual precipitation and positively correlated with thermal conditions (mean temperature of the coldest month and potential evapotranspiration). However, different from shrubs, the SLA of trees was more affected by phylogeny. (2) For both trees and shrubs, SLA was positively correlated with leaf total nitrogen (TN) and total phosphorus (TP) concentrations, but negatively correlated with total carbon (TC) concentration. Trees and shrubs differed significantly in the regression slopes of SLA with TN and TP, but did not differ in the slope of SLA with TC. (3) Climatic factors significantly affected the slope of the relationship between SLA and TC, while phylogeny affected the slope of SLA with TN and TC for both trees and shrubs. Climatic factors and phylogeny together affected the slope between SLA and TP for shrubs, but not for trees.
    ConclusionThe adaptation of SLA to environment and the resource utilization strategy were similar for trees and shrubs, but there were also differences in the modulators of the relationship between SLA and TP for trees and shrubs. Compared with trees, the understory shrubs have a tendency to convergent evolution, generally with high-SLA leaves and more sensitive to climate, and may store more phosphorus in the leaves to meet the needs of survival.
  • [1]
    Smith W K, Vogelmann T C, Delucia E H, et al. Leaf form and photosynthesis[J]. BioScience, 1997, 47(11): 785−793. doi: 10.2307/1313100
    [2]
    Wilson P J, Thompson K E N, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 1999, 143(1): 155−162. doi: 10.1046/j.1469-8137.1999.00427.x
    [3]
    董莉莉, 刘世荣, 史作民, 等. 中国南北样带上栲属树种叶功能性状与环境因子的关系[J]. 林业科学研究, 2009, 22(4):463−469. doi: 10.3321/j.issn:1001-1498.2009.04.001

    Dong L L, Liu S R, Shi Z M, et al. Relationships between leaf traits of Castanopsis species and the environmental factors in the North-South transect of eastern China[J]. Forest Research, 2009, 22(4): 463−469. doi: 10.3321/j.issn:1001-1498.2009.04.001
    [4]
    连政华, 张春雨, 程艳霞, 等. 中国东北部典型树种功能性状地理变异规律研究[J]. 北京林业大学学报, 2019, 41(3):42−48.

    Lian Z H, Zhang C Y, Cheng Y X, et al. Geographical variations of functional traits of typical tree species in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 42−48.
    [5]
    曹科, 饶米德, 余建中, 等. 古田山木本植物功能性状的系统发育信号及其对群落结构的影响[J]. 生物多样性, 2013, 21(5):564−571.

    Cao K, Rao M D, Yu J Z, et al. The phylogenetic signal of functional traits and their effects on community structure in an evergreen broad-leaved forest[J]. Biodiversity Science, 2013, 21(5): 564−571.
    [6]
    邓蕾, 王鸿喆, 上官周平, 等. 水蚀风蚀交错区柠条锦鸡儿叶片比叶面积和营养元素变化动态[J]. 生态学报, 2010, 30(18):4889−4897.

    Deng L, Wang H Z, Shangguan Z P, et al. Variations of specific leaf area and nutrients of Chinese caragana in the Loess Plateau region suffering both wind and water erosions[J]. Acta Ecologica Sinica, 2010, 30(18): 4889−4897.
    [7]
    徐朝斌, 钟全林, 程栋梁, 等. 基于地理种源的刨花楠苗木比叶面积与叶片化学计量学关系[J]. 生态学报, 2015, 35(19):6507−6515.

    Xu C B, Zhong Q L, Cheng D L, et al. Variation in relationships between SLA and leaf C, N, P stoichiometry in Machilus pauhoi among locations[J]. Acta Ecologica Sinica, 2015, 35(19): 6507−6515.
    [8]
    杨美华. 长白山的气候特征及北坡垂直气候带[J]. 气象学报, 1981, 39(3):311−319.

    Yang M H. The climatic features of Changbaishan and its vertical climate zone on the northern slop[J]. Acta Meteorologica Sinica, 1981, 39(3): 311−319.
    [9]
    Kembel S W, Cahill J F. Independent evolution of leaf and root traits within and among temperate grassland plant communities [J/OL]. PLoS one, 2011, 6(6): e19992 [2018−11−20] (2011−06−08). https://doi.org/10.1371/journal.pone.0019992.
    [10]
    Zhang M, Ji C, Zhu J, et al. Comparison of wood physical and mechanical traits between major gymnosperm and angiosperm tree species in China[J]. Wood Science and Technology, 2017, 51(6): 1405−1419. doi: 10.1007/s00226-017-0954-1
    [11]
    Webb C O, Donoghue M J. Phylomatic: tree assembly for applied phylogenetics[J]. Molecular Ecology Notes, 2005, 5(1): 181−183. doi: 10.1111/j.1471-8286.2004.00829.x
    [12]
    Zhang S B, Slik J W F, Zhang J L, et al. Spatial patterns of wood traits in China are controlled by phylogeny and the environment[J]. Global Ecology and Biogeography, 2011, 20(2): 241−250. doi: 10.1111/j.1466-8238.2010.00582.x
    [13]
    Kress W J, Erickson D L, Jones F A, et al. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama[J]. Proceedings of the National Academy of Sciences, 2009, 106(44): 18621−18626. doi: 10.1073/pnas.0909820106
    [14]
    Group C P W, Hollingsworth P M, Forrest L L, et al. A DNA barcode for land plants[J]. Proceedings of the National Academy of Sciences, 2009, 106(31): 12794−12797. doi: 10.1073/pnas.0905845106
    [15]
    裴男才, 张金龙, 米湘成, 等. 植物DNA条形码促进系统发育群落生态学发展[J]. 生物多样性, 2011, 19(3):284−294.

    Pei N C, Zhang J L, Mi X C, et al. Plant DNA barcodes promote the development of phylogenetic community ecology[J]. Biodiversity Science, 2011, 19(3): 284−294.
    [16]
    Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
    [17]
    Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135−1142. doi: 10.1111/j.1461-0248.2007.01113.x
    [18]
    Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x
    [19]
    么旭阳, 胡耀升, 刘艳红. 长白山阔叶红松林不同群落类型的植物功能性状与功能多样性[J]. 西北农林科技大学学报(自然科学版), 2014, 42(3):77−84.

    Yao X Y, Hu Y S, Liu Y H. Plant functional traits and functional diversities of different communities in broad-leaved Korean pine forests in the Changbai Mountain[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition), 2014, 42(3): 77−84.
    [20]
    杨蕾, 孙晗, 樊艳文, 等. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12):1228−1238. doi: 10.17521/cjpe.2017.0115

    Yang L, Sun H, Fan Y W, et al. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China[J]. Chinese Journal of Plant Ecology, 2017, 41(12): 1228−1238. doi: 10.17521/cjpe.2017.0115
    [21]
    姜沛沛, 曹扬, 陈云明. 陕西省森林群落乔灌草叶片和凋落物C、N、P生态化学计量特征[J]. 应用生态学报, 2016, 27(2):365−372.

    Jiang P P, Cao Y, Chen Y M. C, N, P stoichiometric characteristics of tree, shrub, herb leaves and litter in forest community of Shaanxi Province, China[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 365−372.
    [22]
    戴志聪, 杜道林, 司春灿, 等. 用扫描仪及Image J软件精确测量叶片形态数量特征的方法[J]. 广西植物, 2009, 29(3):342−347. doi: 10.3969/j.issn.1000-3142.2009.03.013

    Dai Z Q, Du D L, Si C C, et al. A method to exactly measure the morphological quantity of leaf using Scanner and Image J Software[J]. Guihaia, 2009, 29(3): 342−347. doi: 10.3969/j.issn.1000-3142.2009.03.013
    [23]
    王维华. 红松针叶面积的测定[J]. 辽宁林业科技, 1985(2):22−24.

    Wang W H. Methods to measure the leaf area of Pinus koraiensis[J]. Liaoning Forestry Science and Technology, 1985(2): 22−24.
    [24]
    方精云. 地理要素对我国温度分布影响的数量评价[J]. 生态学报, 1992, 12(2):97−104. doi: 10.3321/j.issn:1000-0933.1992.02.006

    Fang J Y. Study on the geographic elements affecting temperature distribution in China[J]. Acta Ecologica Sinica, 1992, 12(2): 97−104. doi: 10.3321/j.issn:1000-0933.1992.02.006
    [25]
    Wang X P, Fang J Y, Zhu B. Forest biomass and root-shoot allocation in northeast China[J]. Forest Ecology and Management, 2008, 255(12): 4007−4020. doi: 10.1016/j.foreco.2008.03.055
    [26]
    Barrufol M, Schmid B, Bruelheide H, et al. Biodiversity promotes tree growth during succession in subtropical forest[J/OL]. PLoS one, 2013, 8(11): e81246 (2013−09−26) [2018−11−02]. https://doi.org/10.1371/journal.pone.0081246.
    [27]
    Farris J S, Källersjö M, Kluge A G, et al. Testing significance of incongruence[J]. Cladistics, 1994, 10(3): 315−319. doi: 10.1111/j.1096-0031.1994.tb00181.x
    [28]
    Nguyen L T, Schmidt H A, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268−274.
    [29]
    Sanderson M J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock[J]. Bioinformatics, 2003, 19(2): 301−302. doi: 10.1093/bioinformatics/19.2.301
    [30]
    He J S, Wang X P, Flynn D F B, et al. Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence[J]. Ecology, 2009, 90(10): 2779−2791. doi: 10.1890/08-1126.1
    [31]
    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [32]
    Kembel S W, Cowan P D, Helmus M R, et al. Picante: R tools for integrating phylogenies and ecology[J]. Bioinformatics, 2010, 26(11): 1463−1464. doi: 10.1093/bioinformatics/btq166
    [33]
    Sun H, Wang X P, Fan Y W, et al. Effects of biophysical constraints, climate and phylogeny on forest shrub allometries along an altitudinal gradient in Northeast China[J/OL]. Scientific Reports, 2017, 7: 43769, https://doi.org/10.1038/srep43769.
    [34]
    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
    [35]
    Wright I J, Westoby M. Leaves at low versus high rainfall: coordination of structure, lifespan and physiology[J]. New Phytologist, 2002, 155(3): 403−416. doi: 10.1046/j.1469-8137.2002.00479.x
    [36]
    Reich P B, Walters M B, Ellsworth D S. From tropics to tundra: Global convergence in plant functioning[J]. Proceedings of the National Academy of Sciences, 1997, 94(25): 13730−13734. doi: 10.1073/pnas.94.25.13730
    [37]
    Milla R, Reich P B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude[J]. Annals of Botany, 2011, 107(3): 455−465. doi: 10.1093/aob/mcq261
    [38]
    房帅, 原作强, 蔺菲, 等. 长白山阔叶红松林木本植物系统发育与功能性状结构[J]. 科学通报, 2014, 59(24):2342−2348. doi: 10.1360/N972014-00291

    Fang S, Yuan Z Q, Lin F, et al. Functional and phylogenetic structures of woody plants in broad-leaved Korean pine mixed forest in Changbai Mountains, Jilin, China[J]. Chinese Science Bulletin, 2014, 59(24): 2342−2348. doi: 10.1360/N972014-00291
    [39]
    Jefferson L V, Pennacchio M. The impact of shade on establishment of shrubs adapted to the high light irradiation of semi-arid environments[J]. Journal of Arid Environments, 2005, 63(4): 706−716. doi: 10.1016/j.jaridenv.2005.04.004
    [40]
    田杰, 王庆伟, 于大炮, 等. 长白山北坡气温的垂直变化[J]. 干旱区资源与环境, 2013, 27(4):65−69.

    Tian J, Wang Q W, Yu D P, et al. Air temperature variation along altitudinal gradient on the northern slope of Mt. Changbai, China[J]. Journal of Arid Land Resources and Environment, 2013, 27(4): 65−69.
    [41]
    Treml V, Hejda T, Kašpar J. Differences in growth between shrubs and trees: How does the stature of woody plants influence their ability to thrive in cold regions?[J]. Agricultural and Forest Meteorology, 2019, 271: 54−63. doi: 10.1016/j.agrformet.2019.02.036
    [42]
    Kergunteuil A, Descombes P, Glauser G, et al. Plant physical and chemical defence variation along elevation gradients: a functional trait-based approach[J]. Oecologia, 2018, 187(2): 561−571. doi: 10.1007/s00442-018-4162-y
    [43]
    Poorter H, De Jong R O B. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity[J]. New Phytologist, 1999, 143(1): 163−176. doi: 10.1046/j.1469-8137.1999.00428.x
    [44]
    Hoch G, Popp M, Körner C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline[J]. Oikos, 2002, 98(3): 361−374. doi: 10.1034/j.1600-0706.2002.980301.x
    [45]
    Hoffmann W A, Franco A C, Moreira M Z, et al. Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees[J]. Functional Ecology, 2005, 19(6): 932−940. doi: 10.1111/j.1365-2435.2005.01045.x
    [46]
    Lambers H, Chapin Ⅲ F S, Pons T L. Plant Physiological Ecology[M]. New York: Springer Science & Business Media, 2008.
    [47]
    李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2006.

    Li H S. Modern plant physiology[M]. Beijing: Higher Education Press, 2006.
    [48]
    Yang S Y, Huang T K, Kuo H F, et al. Role of vacuoles in phosphorus storage and remobilization[J]. Journal of Experimental Botany, 2017, 68(12): 3045−3055.
    [49]
    Han W X, Fang J Y, Reich P B, et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China[J]. Ecology Letters, 2011, 14(8): 788−796. doi: 10.1111/j.1461-0248.2011.01641.x
    [50]
    贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1):2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002

    He J S, Han X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002
  • Related Articles

    [1]Zhang Luyue, Liu Yanhong, Han Dongqing. Differences in growth and adaptive strategies between male and female plants of Cercidiphyllum japonicum[J]. Journal of Beijing Forestry University, 2024, 46(12): 71-81. DOI: 10.12171/j.1000-1522.20230263
    [2]Kang Xiangyang. Thoughts on tree breeding strategies[J]. Journal of Beijing Forestry University, 2019, 41(12): 15-22. DOI: 10.12171/j.1000-1522.20190412
    [3]Kang Xiangyang. Thinking about clonal breeding strategy of forest trees[J]. Journal of Beijing Forestry University, 2019, 41(7): 1-9. DOI: 10.13332/j.1000-1522.20190098
    [4]Yang Aiguo, Fu Zhixiang, Wang Lingli, Xiao Fengxiang, Wang Li, Fan Penghui, Zhang Jianqiu. Strategies on water utilization of poplar in Horqin Sandy Land of northern China[J]. Journal of Beijing Forestry University, 2018, 40(5): 63-72. DOI: 10.13332/j.1000-1522.20170430
    [5]YI Xiao-bo, SHAO Ming-an, YUAN Guo-fu, DU Tao, ZHU Xu-chao. Spatial distribution of vegetation and its strategy in using water in the lower reaches of the Tarim River, western China[J]. Journal of Beijing Forestry University, 2017, 39(5): 1-8. DOI: 10.13332/j.1000-1522.20160314
    [6]ZHANG Xian-hui, ZHONG Yue-ming, TAN Tian-yi, WANG Jian-ming, LI Jing-wen, . Effect of soil moisture dynamics on growth and allocation strategy of Populus euphratica seedlings[J]. Journal of Beijing Forestry University, 2016, 38(5): 92-99. DOI: 10.13332/j.1000-1522.20150369
    [7]CHANG Hong, HAO De-jun, YANG Xiao-jun, XIAO Rong-tang, LIU Yong3, QIAN Lu, AN Yu-lin. Comparison of four genomic DNA extraction methods with Scolytidae beetles.[J]. Journal of Beijing Forestry University, 2013, 35(2): 75-79.
    [8]JIN Xin, XU Jie, BAI Kun-dong, FENG Jin-xia, ZHANG Jin-song, WAN Xian-chong. Comparison of drought strategies of three co-existing woody plants by their hydraulic structures[J]. Journal of Beijing Forestry University, 2011, 33(6): 135-141.
    [9]CUI Bin-bin, LI Yun, JIN Xiao-jie, FENG Hui. Genetic characters and polymorphism of chloroplast and mitochondrial DNA in white poplars[J]. Journal of Beijing Forestry University, 2006, 28(6): 9-14.
    [10]WANG Xu-gao, LI Xiu-zhen, HE Hong-shi. Spatial simulation of forest succession under different fire disturbances and planting strategies in northern slopes of Great Xing'anling Mountains[J]. Journal of Beijing Forestry University, 2006, 28(1): 14-22.
  • Cited by

    Periodical cited type(17)

    1. 陈梦洁,吕长平,秧拯民,石杨,帅佳琪. 基于SSR标记的牡丹杂交子代真实性鉴定. 分子植物育种. 2023(06): 1948-1954 .
    2. 马庆国,宋晓波,贺君星,周晔,黄勇,张俊佩,裴东. 基于SSR分子标记的核桃种质资源分子身份证构建. 植物资源与环境学报. 2023(02): 1-9 .
    3. 万映伶,金亦佳,刘爱青,朱梦婷,刘燕. 不同栽培地芍药品种资源遗传多样性的SSR分析比较. 园艺学报. 2023(04): 875-884 .
    4. 郭云,郑勇奇,宗亦臣,楚爱香,林富荣,黄平. 基于SSR标记构建叶子花品种的分子身份证. 福建农林大学学报(自然科学版). 2023(05): 640-648 .
    5. 薛亚鹏,李元阳,陈凌,王海岗,王瑞云,乔治军. 山西省糜子DNA分子身份证的构建. 山西农业大学学报(自然科学版). 2022(01): 19-25 .
    6. 王宇卓,王柳,陈凌,王海岗,王瑞云,乔治军. 北方春糜子区糜子种质分子身份证的创建. 山西农业科学. 2022(04): 486-493 .
    7. 胡玉璐,姜百灵,陈凌,王海岗,曹晓宁,王瑞云,乔治军. 利用SSR创建中国北方黍稷资源DNA身份证. 山西农业科学. 2022(04): 478-485 .
    8. 郑纪伟,教忠意,王保松,何旭东. 柳树新品种指纹图谱构建. 江苏林业科技. 2020(02): 1-5+56 .
    9. 陶乃奇,张斌,刘信凯,周和达,钟乃盛,严丹峰,张敏,高继银,张文驹. 利用荧光标记SSR鉴别21个茶花新品种. 植物学报. 2019(01): 37-45 .
    10. 张妹,何正权,马江,桑子阳,朱仲龙,张德春,马履一,陈发菊. 基于SSR和SRAP标记的红花玉兰品种遗传关系分析及分子鉴定. 北京林业大学学报. 2019(09): 69-80 . 本站查看
    11. 张志军,岳杰,尹花. 麦芽品种多重荧光SSR标记指纹数据库的构建. 食品与发酵工业. 2019(18): 50-57 .
    12. 李程,杨云尧,张克中,李珊珊,商慧颖,吴静. 牡丹花茶品种的筛选及SSR分子身份证的构建. 分子植物育种. 2019(20): 6724-6735 .
    13. 万映伶,刘爱青,张孔英,刘燕. 菏泽和洛阳芍药品种资源表型多样性研究. 北京林业大学学报. 2018(03): 110-121 . 本站查看
    14. 郭斌. 栎属近缘种指纹图谱构建及遗传结构. 北京林业大学学报. 2018(05): 10-18 . 本站查看
    15. 万映伶,张嘉,刘爱青,张孔英,刘燕. 基于SSR标记构建中国芍药品种资源分子身份证. 西北农林科技大学学报(自然科学版). 2018(12): 90-97 .
    16. 冉昆,隋静,王宏伟,魏树伟,张勇,董冉,董肖昌,王少敏. 利用SSR荧光标记构建山东地方梨种质资源分子身份证. 果树学报. 2018(S1): 71-78 .
    17. 黄志城,石敬韡,庞夫花,王显生,赵密珍,陈海荣. 基于SSR标记的草莓品种DNA指纹图谱的构建及应用. 分子植物育种. 2017(08): 3097-3116 .

    Other cited types(6)

Catalog

    Article views (2124) PDF downloads (112) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return