• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Dong Lingbo, Lin Xueying, Liu Zhaogang. Forest carbon sink-timber compound management planning of Pangu Forest Farm in Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 1-11. DOI: 10.12171/j.1000-1522.20190331
Citation: Dong Lingbo, Lin Xueying, Liu Zhaogang. Forest carbon sink-timber compound management planning of Pangu Forest Farm in Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 1-11. DOI: 10.12171/j.1000-1522.20190331

Forest carbon sink-timber compound management planning of Pangu Forest Farm in Great Xing’an Mountains of northeastern China

More Information
  • Received Date: August 19, 2019
  • Revised Date: November 17, 2019
  • Available Online: July 14, 2020
  • Published Date: September 06, 2020
  •   Objective  To provide the optimal forest management paradigm for various forest types, the research of forest management in our country had mainly been performed on the scale of forest stand (or sample plot), however the importance of temporal and spatial configuration of alternative thinning treatments had been ignored for a long term. Therefore, a spatial explicitly forest management planning model was developed by integrating forest carbon increment objective into traditional timber harvest scheduling problem, which can provide some new theories and technologies for the multi-objective management of forest resources in China.
      Method  With the guidance of forest category management theory, a practical forest multi-objective spatial management planning model (FMS), including the forest timber production and carbon increments of aboveground tree-layer, was developed for the Pangu Forest Farm in Great Xing’an Mountains of northeastern China using the simulated annealing algorithm. To improve the practicality of the planning model, FMS subjected to the even-flow constraints of harvest volume, the inventory constraint of forest carbon stocks, and the spatial constraints of different thinning treatments. Based on FMS and the constraints of carbon trading and timber market in China, the optimal forest management plans for a 50-years planning horizon of Pangu Forest Farm was optimized. Then, the amount of timber harvest, the amount of carbon increments, and the temporal and spatial configuration of alternative thinning treatments for each period were quantificationally analyzed.
      Result  The joint net present value (NPV) of timber production and carbon increments during the 50-years planning horizon for Pangu Forest Farm was as large as 1.54 × 108 CNY, in which the NPVs of timber production and carbon increments were 1.37 × 108 and 0.17 × 108 CNY, respectively when the carbon price was assumed as 120 CNY/t. The amount of harvest timber and carbon increments during the planning horizon were estimated as 1.78 × 106 m3 and 1.68 × 106 t, and the carbon stock of aboveground tree biomass was 5.99 × 106 t, in which the carbon stock of aboveground tree biomass at the ending of planning horizon increased by 38.98% with respect to that at the beginning of planning horizon. Within the optimal management plan, the protected area, thinned area and no-thinned area accounted for 44.36%, 48.01% and 7.63%, respectively, in which the thinned area with high intensity accounted for 41.78% of the total forest area in this region. In addition, some significant differences were observed among the configuration of alternative management activities for each period, in which the amount of harvest volume and thinned area, as well as the number of thinned sub-compartments all accounted for approximately 90% of their gross for each period. The distributions of thinning treatments presented significantly spatial characteristics for the optimal management plans, however the pattern was all conformed with the constraints.
      Conclusion  The outputs of FMS have some significant advantages: (1) forest managers always can obtain some pediocratic economic benefits for each period due to the even-flow constraints of harvest volume; (2) the forest resources can be protected from over-harvesting due to the inventory constraints of carbon stocks, which are meaningful to promote the function of forest carbon sequestration; (3) the forest planning model can provide the optimal temporal and spatial configuration of forest management activities. Obviously, all these advantages are helpful for the multi-objective management of forest resources in our country. However, the values of some key constraint parameters still need further research to improve the practicality of the proposed planning model in future.
  • [1]
    国家林业局. 第八次全国森林资源清查结果[J]. 林业资源管理, 2014(1):1−2.

    State Forestry Bureau. The 8th forest resources inventory results (2009−2013)[J]. Forest Resources Management, 2014(1): 1−2.
    [2]
    惠刚盈, 赵中华, 袁士云. 森林经营模式评价方法: 以甘肃小陇山林区为例[J]. 林业科学, 2011, 47(11):114−120. doi: 10.11707/j.1001-7488.20111118

    Hui G Y, Zhao Z H, Yuan S Y. Evaluation method of forest management models: a case study of Xiaolongshan Forest Area in Gansu Province[J]. Scientia Silvae Sinicae, 2011, 47(11): 114−120. doi: 10.11707/j.1001-7488.20111118
    [3]
    戎建涛, 何友均. 不同森林经营模式对丹清河林场天然次生林碳贮量的影响[J]. 林业科学, 2014, 50(9):26−35.

    Rong J T, He Y J. Effects of different forest management regimes on carbon stock in natural secondary forests at Danqinghe Forest Farm[J]. Scientia Silvae Sinicae, 2014, 50(9): 26−35.
    [4]
    周国模. 目标规划在同龄林收获调整中的应用[J]. 北京林业大学学报, 1989, 11(4):39−46.

    Zhou G M. An application of goal programming on even-aged forest harvesting regulation[J]. Journal of Beijing Forestry University, 1989, 11(4): 39−46.
    [5]
    黄家荣, 杨世逸. 龙里林场多目标规划森林调整[J]. 云南林业调查规划, 1993(4):1−10.

    Huang J R, Yang S Y. The multiobjective planning of forest resources for Youli Forest Farm[J]. Yunnan Forest Inventory and Planning, 1993(4): 1−10.
    [6]
    于政中, 周泽海. 应用矩阵模型及线性规划进行异龄林收获调整的初步研究[J]. 林业科学, 1988, 24(3):282−290.

    Yu Z Z, Zhou Z H. Application of matrix model and linear programming to the yield regulation of uneven-aged stands[J]. Scientia Silvae Sinicae, 1988, 24(3): 282−290.
    [7]
    宋铁英, 郑跃军. 异龄林收获调整的动态优化及其计算机仿真[J]. 林业科学, 1989, 25(4):330−339.

    Song T Y, Zheng Y J. Dynamic optimization of uneven-aged forest harvesting regulations and its computer simulation[J]. Scientia Silvae Sinicae, 1989, 25(4): 330−339.
    [8]
    刘莉, 刘国良, 陈绍志, 等. 以多功能为目标的森林模拟优化系统(FSOS)的算法与应用前景[J]. 应用生态学报, 2011, 22(11):3067−3072.

    Liu L, Liu G L, Chen S Z, et al. Multiple functions-targeted algorithms and potential applications of forest simulation optimization system (FSOS)[J]. Chinese Journal of Applied Ecology, 2011, 22(11): 3067−3072.
    [9]
    戎建涛, 雷相东, 张会儒, 等. 兼顾碳贮量和木材生产目标的森林经营规划研究[J]. 西北林学院学报, 2012, 27(2):155−162. doi: 10.3969/j.issn.1001-7461.2012.02.32

    Rong J T, Lei X D, Zhang H R, et al. Forest management planning incorporating values of timber and carbon[J]. Journal of Northwest Forestry University, 2012, 27(2): 155−162. doi: 10.3969/j.issn.1001-7461.2012.02.32
    [10]
    李际平, 赵春燕, 袁晓红, 等. 西洞庭湖区杉-阔林下植物种类及物种多样性分析[J]. 中南林业科技大学学报, 2012, 32(7):49−53.

    Li J P, Zhao C Y, Yuan X H, et al. Undergrowth plant species and their diversity analysis in <italic>Cunninghamia lanceolata</italic> and broadleaf mixed forest in west Dongting Lake area[J]. Journal of Central South University of Forestry & Technology, 2012, 32(7): 49−53.
    [11]
    高建云, 吴兆录, 张强, 等. 海南热带雨林次生林边缘至林内鸟类群落组成与功能集团比较[J]. 生物多样性, 2013, 21(6):677−687.

    Gao J Y, Wu Z L, Zhang Q, et al. Comparison of compositions and functional guilds of bird communities across an edge-interior gradient in secondary forest at Houmiling, Hainan Island, China[J]. Biodiversity Science, 2013, 21(6): 677−687.
    [12]
    Bettinger P, Boston K, Siry J P, et al. Forest management and planning[M]. 2nd ed. New York: Academic Press, 2017.
    [13]
    董灵波, 孙云霞, 刘兆刚. 基于碳和木材目标的森林空间经营规划研究[J]. 北京林业大学学报, 2017, 39(1):52−61.

    Dong L B, Sun Y X, Liu Z G. Integrating carbon and timber objective into forest spatial planning management[J]. Journal of Beijing Forestry University, 2017, 39(1): 52−61.
    [14]
    Boston K, Bettinger P. The economic impact of green-up constraints in the southeastern United States[J]. Forest Ecology and Management, 2001, 145(3): 191−202. doi: 10.1016/S0378-1127(00)00417-5
    [15]
    Bettinger P, Boston K. Habitat and commodity production trade-offs in coastal Oregon[J]. Socio-Economic Planning Sciences, 2008, 42(2): 112−128. doi: 10.1016/j.seps.2006.11.001
    [16]
    Baskent E Z, Keleş S. Developing alternative forest management planning strategies incorporating timber, water and carbon values: an examination of their interactions[J]. Environmental Modeling & Assessment, 2009, 14(4): 467−480.
    [17]
    陈伯望, Von Gadow K, Vilko F, et al. 德国北部挪威云杉林可持续经营中期计划的实例分析[J]. 林业科学研究, 2006, 19(5):541−546. doi: 10.3321/j.issn:1001-1498.2006.05.001

    Chen B W, Von Gadow K, Vilko F, et al. A case study in planning for sustainable forest medium-term management of Norway spruce from Northern Germay[J]. Forest Research, 2006, 19(5): 541−546. doi: 10.3321/j.issn:1001-1498.2006.05.001
    [18]
    陈伯望, Von Gadow K. 德国北部挪威云杉林可持续经营计划中空间目标的优化[J]. 林业科学研究, 2008, 21(3):279−288. doi: 10.3321/j.issn:1001-1498.2008.03.001

    Chen B W, Von Gadow K. Optimization of spatial objectives in planning for sustainable forest medium-term management of Norway spruce from northern Germany[J]. Forest Research, 2008, 21(3): 279−288. doi: 10.3321/j.issn:1001-1498.2008.03.001
    [19]
    董灵波, 孙云霞, 刘兆刚. 基于模拟退火算法的森林空间经营规划[J]. 南京林业大学学报(自然科学版), 2018, 42(1):133−140.

    Dong L B, Sun Y X, Liu Z G. Spatial forest-management planning with simulated annealing algorithm[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(1): 133−140.
    [20]
    王鹤智. 东北林区林分生长动态模拟系统的研究[D]. 哈尔滨: 东北林业大学, 2012.

    Wang H Z. Dynamic simulating system for stand growth of forests in Northeast China[D]. Harbin: Northeast Forestry University, 2012.
    [21]
    董利虎. 东北林区主要树种及林分类型生物量模型研究[D]. 哈尔滨: 东北林业大学, 2015.

    Dong L H. Developing individual and stand-level biomass equations in northeast China forest area[D]. Harbin: Northeast Forestry University, 2015.
    [22]
    Murray A T. Spatial restrictions in harvest scheduling[J]. Forest Science, 1999, 45(1): 45−52.
    [23]
    胡海清, 罗碧珍, 魏书精, 等. 大兴安岭5种典型林型森林生物碳储量[J]. 生态学报, 2015, 35(17):5745−5760.

    Hu H Q, Luo B Z, Wei S J, et al. Estimating biological carbon storage of five typical forest types in the Daxing ’anling Mountains, Heilongjiang, China[J]. Acta Ecologica Sinica, 2015, 35(17): 5745−5760.
    [24]
    Keleş S, Başkent E Z. Modelling and analyzing timber production and carbon sequestration values of forest ecosystems: a case study[J]. Polish Journal of Environmental Studies, 2007, 16(3): 473−479.
    [25]
    Qin H Y, Dong L B, Huang Y L. Evaluating the effects of carbon prices on trade-offs between carbon and timber management objectives in forest spatial harvest scheduling problems: a case study from Northeast China[J]. Forests, 2017, 8(2): 43. doi: 10.3390/f8020043
    [26]
    Dong L B, Lu W, Liu Z G. Developing alternative forest spatial management plans when carbon and timber values are considered: a real case from northeastern China[J]. Ecological Modelling, 2018, 385: 45−57. doi: 10.1016/j.ecolmodel.2018.07.009
    [27]
    World Bank, Ecofys. State and trends of carbon pricing[R]. Washington: World Bank, 2015.
    [28]
    朱臻, 沈月琴, 张耀启, 等. 碳汇经营目标下的林地期望价值变化及碳供给: 基于杉木裸地造林假设研究[J]. 林业科学, 2012, 48(11):112−116. doi: 10.11707/j.1001-7488.20121118

    Zhu Z, Shen Y Q, Zhang Y Q, et al. Change of forestland expected value and carbon supply in the objective of carbon sequestration: based on the Chinese fir plantation in bared land[J]. Scientia Silvae Sinicae, 2012, 48(11): 112−116. doi: 10.11707/j.1001-7488.20121118
  • Related Articles

    [1]Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Yu Haiou, Zheng Jun, Zhang Tianxiang. DBH class structure and arbor biomass of Juglans mandshurica secondary forest[J]. Journal of Beijing Forestry University, 2022, 44(1): 29-37. DOI: 10.12171/j.1000-1522.20200348
    [2]Qin Qianqian, Wang Haiyan, Zheng Yonglin, Lei Xiangdong. Spatial distribution characteristics of litter nutrients in temperate spruce-fir mixed forests[J]. Journal of Beijing Forestry University, 2021, 43(3): 73-84. DOI: 10.12171/j.1000-1522.20200065
    [3]Chen Bei-bei, Wang Kai, Ni Rui-qiang, Cheng Yan-xia. Composition and spatial pattern of tree seedlings in a coniferous and broadleaved mixed forest in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 68-75. DOI: 10.13332/j.1000-1522.20170370
    [4]SUN Yue, XIA Fu-cai, HE Huai-jiang, LIU Bao-dong, WANG Ge-rong, LI Liang. Community structure features of the larch-birch secondary forest on the northeastern slope of Changbai Mountain, Northeast China.[J]. Journal of Beijing Forestry University, 2016, 38(12): 28-38. DOI: 10.13332/j.1000-1522.20160088
    [5]WANG Xin, ZHANG Hua-yu, LI Zong-feng, ZHANG Shi-qiang, WANG Guo-hang, DENG Hong-ping. Community structure and population regeneration of an endangered plant, Thuja sutchuenensis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 28-37. DOI: 10.13332/j.1000-1522.20160028
    [6]L&#xDC, Xun, YANG Shuang-bao, LIU Wen-zhen, GUO Xiao-long, LI An-min, YUAN Yi-chao. Analysis of spatial structure characteristics based on diameter class of trees in primeval Quercus aliena var. acuteserrata community in the forest area of Xiaolong Mountain, Gansu Province.[J]. Journal of Beijing Forestry University, 2015, 37(5): 11-18. DOI: 10.13332/j.1000-1522.20140238
    [7]LUO Zong-shi, XIANG Cheng-hua, ZHANG Lu, XIE Da-jun, LUO Xiao-hua. Spatial distribution of fine roots and underground competition between Chinese prickly ash (Zanthoxylum bungenum) and weeds in Chinese prickly ash plantation[J]. Journal of Beijing Forestry University, 2010, 32(2): 86-91.
    [8]HAN Lu, WANG Hai-zhen, PENG Jie, LIANG Ji-ye, MA Chun-hui. Size-class structure and distribution pattern of Populus euphratica Oliv. in different habitats.[J]. Journal of Beijing Forestry University, 2010, 32(1): 7-12.
    [9]MAO Lei, , WANG Dong-mei, YANG Xiao-hui, YU Hong. Spatial patterns of young Pinus sylvestris var. mongolica saplings and their regeneration analysis in different stands of Inner Mongolia, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 71-77.
    [10]MA Yu-fei, LI Jun-qing. Population structure of Davidia involucrate in Mt.Seven-sister Nature Reserve of central China’s Hubei Province[J]. Journal of Beijing Forestry University, 2005, 27(3): 12-16.
  • Cited by

    Periodical cited type(62)

    1. 张聪,刘琪,李海奎,刘鹏举,詹思颖. 我国尺度兼容和树种分类的材积源森林碳储量模型. 林业科学. 2025(01): 57-69 .
    2. 衣娜娜,毕力格,史金丽,蔡敏,许志丽,郑凤杰,丽娜. 内蒙古大兴安岭飞机冷云增雨潜势预报模型. 干旱区研究. 2025(03): 409-419 .
    3. 王伟武,伏添乐,陈欢. 基于PLUS-InVEST模型的长三角城市群碳储量时空演变与预测. 环境科学. 2025(04): 1937-1950 .
    4. 徐思若,成志影,那雪迎,张栩嘉,马大龙,张鹏. 黑龙江省森林碳汇及其经济价值的变化分析与潜力预测. 生态学杂志. 2024(01): 197-205 .
    5. 张圆圆,龙勤. 云南省森林净碳储量估算及影响因素分析——基于碳源和碳汇双重角度. 绿色科技. 2024(01): 227-231 .
    6. 汪宗顺,张海鹏,岳超,杨红强,张寒. 造林增汇是实现碳中和的成本有效途径吗?——以西北地区为例. 自然资源学报. 2024(03): 731-748 .
    7. 田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
    8. 杨俊豪,张皓东,李永昌,刘书敏. 基于可加性模型的云南松和华山松碳储量模型构建. 昆明理工大学学报(自然科学版). 2024(02): 140-150 .
    9. 于鲁冀,张亚慧,樊雷,王莉,刘莹莹. 河南省森林固碳量与碳汇价值评估. 郑州大学学报(工学版). 2024(03): 7-13 .
    10. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    11. 李林,赵毅,温智峰,刘佳润,魏识广,周景钢,冯嘉谊. 南亚热带常绿阔叶林地上碳储量空间分布特征及其影响因素. 生态学报. 2024(11): 4687-4697 .
    12. 马振华. 基于第7至9次森林资源清查的宁夏森林碳储量动态变化特征. 陕西林业科技. 2024(03): 39-45 .
    13. 郭同方,吴水荣,张超,苏秦. 重点国有林区森林碳储量动态变化及增汇策略分析——以龙江森工为例. 江西农业大学学报. 2024(03): 582-596 .
    14. 贺晨瑞,庞丽峰,谭炳香,黄逸飞,孙学霞. 基于遥感的北京市森林地上碳储量监测. 西北林学院学报. 2024(03): 162-170+265 .
    15. Zhencan ZHENG,Liuwen ZHUANG,Guofang MIAO,Han LIU,Zhiqiang CHENG,Wenyu LI,Rong SHANG,Peng GONG,Jing Ming CHEN. Elevational distribution of forests and its spatiotemporal dynamics in subtropical China from 2000 to 2019. Science China Earth Sciences. 2024(08): 2563-2582 .
    16. 郑振灿,庄留文,缪国芳,刘涵,程志强,李纹宇,商荣,宫鹏,陈镜明. 中国亚热带地区2000~2019年森林海拔分布特征及其时空动态. 中国科学:地球科学. 2024(08): 2604-2624 .
    17. 张亮. 韶关市森林植被碳储量与碳密度动态研究. 林业与环境科学. 2024(05): 88-94 .
    18. 范彩慧,段成波,龙德增,赵润华. 保山市森林生物质碳储量分析. 绿色科技. 2024(20): 68-73 .
    19. 胡兴波,张月,胡长江,李慧波,王光鑫. 西南地区常见林木的固碳经济效益分析. 农村科学实验. 2024(23): 114-116 .
    20. 曹爱平,罗雷,王晓荣,徐立,郑晓敏. 基于湖北第五次森林资源普查数据的森林碳储量研究. 湖北林业科技. 2024(06): 1-6 .
    21. 王媛媛,刘可欣,张湘婕,王艺璇,赵俊玮,徐连杰,郭婷婷,王天意,任志彬,代新竹. 城市森林碳汇估算计量——以长春市为例. 中国城市林业. 2024(06): 116-122 .
    22. 张翔,刘洋,玉山,苏日娜,阿茹汗. 基于无人机激光雷达和多光谱数据的森林树高提取方法研究. 森林工程. 2023(01): 29-36 .
    23. 胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
    24. 陈宏福,韦体,敏正龙,妥永华,高丹丹,蔡勇,杨具田,白日霞,郭鹏辉. 黄河上游太子山国家级自然保护区森林碳储量及碳增汇潜力研究. 西北民族大学学报(自然科学版). 2023(01): 63-70 .
    25. 朱建华,田宇,李奇,刘华妍,郭学媛,田惠玲,刘常富,肖文发. 中国森林生态系统碳汇现状与潜力. 生态学报. 2023(09): 3442-3457 .
    26. 张煜星,王雪军. 1973—2018年我国桉树人工林生产力及碳汇能力. 林业科学. 2023(03): 54-64 .
    27. 简尊吉,朱建华,王小艺,肖文发. 我国陆地生态系统碳汇的研究进展和提升挑战与路径. 林业科学. 2023(03): 12-20 .
    28. 刘川. 利用森林资源一类清查数据计算活立木蓄积量的方法及应用研究. 山东林业科技. 2023(03): 69-72 .
    29. 冯源,王连晶. 县域尺度乔木林碳储量及碳汇特征分析——以马关县为例. 西部林业科学. 2023(03): 152-159 .
    30. 罗佩文,熊小雨,刘冰琳. 基于机器学习和生长预测的森林固碳分析和多目标规划管理策略. 科技风. 2023(19): 156-159 .
    31. 汤浩藩,季巍,周卫平,欧阳希,王华,张文晶,许彦红. 主要乔木树种碳储量与碳密度分布特征——以昆明市海口林场为例. 南方林业科学. 2023(03): 6-10+29 .
    32. 王迎辉,孙浩然,解华臻,张岩,卢振生. 小型树苗扦插机的设计. 南方农机. 2023(22): 35-37+57 .
    33. 江晓雨,刘康桢,徐帅. 基于LCA的合肥滨湖国家森林公园的环境评估. 合肥学院学报(综合版). 2023(05): 70-76 .
    34. 李放,孙红召,黄新峰,曹文昱,冯东阳,冯瑞琦. 基于河南省第九次森林资源清查的乔木林碳储量研究. 绿色科技. 2023(17): 151-157 .
    35. 陈晨,时军霞,刘光武. 河南省乔木林碳储量和碳密度研究. 安徽农业科学. 2023(22): 108-111 .
    36. 韩艺,张峰. 北京市不同功能分区的乔木林储碳功能对比研究. 林业调查规划. 2023(05): 26-31 .
    37. 朱昳橙. 海寨林场主要乔木树种碳储量和碳密度特征研究. 宁夏农林科技. 2023(12): 24-28 .
    38. 张颖,李晓格. 碳达峰碳中和目标下北京市森林碳汇潜力分析. 资源与产业. 2022(01): 15-25 .
    39. 徐明锋,苏永新,龚益广,王锋,张少杰,何春梅. 粤西桉阔林乔木层碳密度及其影响因子研究. 林业与环境科学. 2022(01): 1-8 .
    40. 张全斌,周琼芳. “双碳”目标下中国能源CO_2减排路径研究. 中国国土资源经济. 2022(04): 22-30 .
    41. 付晓,张煜星,王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学. 2022(02): 32-41 .
    42. 尹海龙,张乃暄,许中旗. 冀北坝上及坝下地区华北落叶松林土壤碳储量的比较. 林业与生态科学. 2022(02): 164-168 .
    43. 刘华超,任春颖,王宗明,张柏. 大兴安岭生态功能区生态系统服务功能动态及权衡协同关系研究. 生态与农村环境学报. 2022(05): 587-598 .
    44. 胡忠宇,苏建兰. 森林植被碳储量研究综述与展望. 农业与技术. 2022(12): 58-62 .
    45. 肖水寒,张驭骁,张佳栋,周甲佳. 基于碳存储量预测的森林经营计划决策模型. 科学技术创新. 2022(23): 165-168 .
    46. Menghong HU,Jiying LI,Man SUN. Strong Seedlings of Improved Varieties and High-efficiency Cultivation of Artificial Forests Promotes the Early Realization of "Carbon Neutrality". Agricultural Biotechnology. 2022(04): 136-141 .
    47. 曾丽,吕寻,胡勐鸿. 良种是加速实现“碳中和”的有效保障措施——以甘肃省地方良种为例. 林业科技通讯. 2022(08): 35-39 .
    48. 周静,吕晓琪. 北京大兴区森林植被碳储量计算及价值分析. 绿色科技. 2022(16): 49-52 .
    49. 薛春泉,陈振雄,杨加志,曾伟生,林丽平,刘紫薇,张红爱,苏志尧. 省市县一体化森林碳储量估测技术体系——以广东省为例. 林业资源管理. 2022(04): 157-163 .
    50. 雷海清,孙高球,郑得利. 温州市森林生态系统碳储量研究. 南京林业大学学报(自然科学版). 2022(05): 20-26 .
    51. 肖君. 福建省天然乔木林碳储量动态变化及增汇策略. 南京林业大学学报(自然科学版). 2022(05): 27-32 .
    52. 范春楠,刘强,郑金萍,郭忠玲,张文涛,刘英龙,谢遵俊,任增君. 采伐强度对阔叶红松林生态系统碳密度恢复的影响. 北京林业大学学报. 2022(10): 33-42 . 本站查看
    53. 张颖,孟娜,姜逸菲. 中国森林碳汇与林业经济发展耦合及长期变化特征分析. 北京林业大学学报. 2022(10): 129-141 . 本站查看
    54. 陈科屹,王建军,何友均,张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估. 生态环境学报. 2022(09): 1725-1734 .
    55. 荀文会. “碳中和”视角下的沈阳市国土空间规划路径. 规划师. 2022(10): 88-92 .
    56. 王飞平,张加龙. 基于碳卫星的森林碳储量估测研究综述. 世界林业研究. 2022(06): 30-35 .
    57. 侯瑞萍,陈健,夏朝宗,宋佳庚,黄翔,郑芊卉,安天宇,郝月兰. 2020年京津冀地区林地和其他生物质碳汇量研究. 林业资源管理. 2022(05): 42-52 .
    58. 郭学媛,朱建华,刘华妍,田惠玲,李春蕾,刘常富,肖文发. 林业活动对区域森林生物量碳源汇格局的影响——以南平市为例. 生态学报. 2022(23): 9548-9559 .
    59. 侯瑞萍,夏朝宗,陈健,郑芊卉,李海奎,黄金金,黄翔,邓继峰,韩旭,安天宇,郝月兰,苟丽晖. 长江经济带林地和其他生物质碳储量及碳汇量研究. 生态学报. 2022(23): 9483-9498 .
    60. 韩光荣,赵琦,邵长城. 优化施肥对樟子松幼苗生长和抗逆生理的影响. 林业调查规划. 2022(06): 49-54 .
    61. 刘丽,彭琛. 宁强县森林资源变化分析. 绿色科技. 2021(19): 97-99 .
    62. 张峰,彭祚登. 北京市森林碳储量和碳汇经济价值研究. 林业资源管理. 2021(06): 52-58 .

    Other cited types(41)

Catalog

    Article views (1495) PDF downloads (107) Cited by(103)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return