Citation: | Ma Xiaodong, Li Xia, Liu Junxiang, Zhai Feifei, Sun Zhenyuan, Han Lei. Effects of Crucibulum laeve inoculation on photosynthesis of Salix viminalis cultivated in PAHs-contaminated soil[J]. Journal of Beijing Forestry University, 2020, 42(5): 80-87. DOI: 10.12171/j.1000-1522.20190340 |
[1] |
Buonanno G, Giovinco G, Morawska L, et al. Lung cancer risk of airborne particles for Italian population[J]. Environmental Research, 2015, 142: 443−451. doi: 10.1016/j.envres.2015.07.019
|
[2] |
Joner E J, Leyval C, Colpaert J V. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere[J]. Environmental Pollution, 2006, 142(1): 34−38. doi: 10.1016/j.envpol.2005.09.007
|
[3] |
Agnello A C, Bagard M, Van Hullebusch E D, et al. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation[J]. Science of the Total Environment, 2016, 563−564: 693−703. doi: 10.1016/j.scitotenv.2015.10.061
|
[4] |
García-Sánchez M, Kosnar Z, Mercl F, et al. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil[J]. Ecotoxicology and Environmental Safety, 2018, 147: 165−174. doi: 10.1016/j.ecoenv.2017.08.012
|
[5] |
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures[C]. Lyons: International Agency for Research on Cancer, 2010.
|
[6] |
Bamforth S M, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(7): 723−736.
|
[7] |
Ghosal D, Ghosh S, Dutta T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review[J/OL]. Frontiers in Microbiology, 2016, 7: 1369 (2016−11−15) [2018−08−12]. https://doi.org/10.3389/fmicb.2016.01837.
|
[8] |
Lladó S, Gràcia E, Solanas A M, et al. Fungal and bacterial microbial community assessment during bioremediation assays in an aged creosote-polluted soil[J]. Soil Biology and Biochemistry, 2013, 67: 114−123. doi: 10.1016/j.soilbio.2013.08.010
|
[9] |
Haritash A K, Kaushik C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Journal of Hazardous Materials, 2009, 169(1−3): 1−15. doi: 10.1016/j.jhazmat.2009.03.137
|
[10] |
Radtke C, Cook W S, Anderson A. Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soils[J]. Applied Microbiology & Biotechnology, 1994, 41(2): 274−280.
|
[11] |
Wiesche C I D, Martens R, Zadrazil F. The effect of interaction between white-rot fungi and indigenous microorganisms on degradation of polycyclic aromatic hydrocarbons in soil[J]. Water Air & Soil Pollution, 2003, 3(3): 73−79.
|
[12] |
Borràs E, Caminal G, Sarrà M, et al. Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil[J]. Soil Biology and Biochemistry, 2010, 42(12): 2087−2093. doi: 10.1016/j.soilbio.2010.08.003
|
[13] |
Gao D, Du L, Yang J, et al. A critical review of the application of white rot fungus to environmental pollution control[J]. Critical Reviews in Biotechnology, 2010, 30(1): 70−77. doi: 10.3109/07388550903427272
|
[14] |
Alagić S Č, Maluckov B S, Radojičić V B. How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review[J]. Clean Technologies and Environmental Policy, 2014, 17(3): 597−614.
|
[15] |
Huang A C, Jiang T, Liu Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J/OL]. Science, 2019, 364(2019−05−10)[2019−07−25]. https://doi.org/10.1126/science.aau6389.
|
[16] |
Marmiroli M, Pietrini F, Maestri E, et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics[J]. Tree Physiology, 2011, 31(12): 1319−1334. doi: 10.1093/treephys/tpr090
|
[17] |
Berndes G, Fredrikson F, Börjesson P. Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden[J]. Agriculture, Ecosystems & Environment, 2004, 103(1): 207−223.
|
[18] |
Ucisik A S, Trapp S. Uptake, removal, accumulation, and phytotoxicity of 4-chlorophenol in willow trees[J]. Archives of Environmental Contamination and Toxicology, 2008, 54(4): 619−627. doi: 10.1007/s00244-007-9065-6
|
[19] |
Oleszczuk P, Baran S. Polycyclic aromatic hydrocarbons content in shoots and leaves of willow (Salix viminalis) cultivated on the sewage sludge-amended soil[J]. Water, Air, and Soil Pollution, 2005, 168(1−4): 91−111. doi: 10.1007/s11270-005-0884-7
|
[20] |
Oleszczuk P, Godlewska P, Reible D D, et al. Bioaccessibility of polycyclic aromatic hydrocarbons in activated carbon or biochar amended vegetated (Salix viminalis) soil[J]. Environmental Pollution, 2017, 227: 406−413. doi: 10.1016/j.envpol.2017.04.064
|
[21] |
Bissonnette L, St-Arnaud M, Labrecque M. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial[J]. Plant and Soil, 2010, 332(1−2): 55−67. doi: 10.1007/s11104-009-0273-x
|
[22] |
Shimmen T, Nishikawa S I. Phytoremediation of polycyclic aromatic hydrocarbons in manufactured gas plant-impacted soil[J]. Journal of Environmental Quality, 2005, 34(5): 1755−1762. doi: 10.2134/jeq2004.0399
|
[23] |
Önneby K. Phytoremediation of a highly creosote-contaminated soil by means of Salix viminalis[D]. Uppsala : Swedish University of Agricultural Sciences, 2005.
|
[24] |
Hultgren J, Pizzul L, Castillo M D P. Degradation of PAH in a creosote-contaminated soil: a comparison between the effects of willows (Salix viminalis), wheat straw and a nonionic surfactant[J]. International Journal of Phytoremediation, 2009, 12(1): 54−66. doi: 10.1080/15226510902767122
|
[25] |
Tornberg K, Bååth E, Olsson S. Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils[J]. Biology and Fertility of Soils, 2003, 37: 190−197. doi: 10.1007/s00374-002-0574-1
|
[26] |
Reina R, Liers C, Ocampo J A, et al. Solid state fermentation of olive mill residues by wood- and dung-dwelling Agaricomycetes: effects on peroxidase production, biomass development and phenol phytotoxicity[J]. Chemosphere, 2013, 93(7): 1406−1412. doi: 10.1016/j.chemosphere.2013.07.006
|
[27] |
Fellet G, Pošćić F, Licen S, et al. PAHs accumulation on leaves of six evergreen urban shrubs: a field experiment[J]. Atmospheric Pollution Research, 2016, 7(5): 915−924. doi: 10.1016/j.apr.2016.05.007
|
[28] |
Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1): 1−15. doi: 10.1104/pp.24.1.1
|
[29] |
Khan Z, Roman D, Kintz T, et al. Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1[J]. Environmental Science and Technology, 2014, 48(20): 12221−12228. doi: 10.1021/es503880t
|
[30] |
Rajtor M, Piotrowska-Seget Z. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants[J]. Chemosphere, 2016, 162: 105−116. doi: 10.1016/j.chemosphere.2016.07.071
|
[31] |
宋微, 吴小芹. 外生菌根真菌对‘NL-895杨’光合作用的影响[J]. 西北植物学报, 2011, 31(7):1474−1478.
Song W, Wu X Q. Effect of ectomycorrhizal fungi on photosynthesis of poplar NL-895[J]. Acta Bot Boreal-Occident Sin, 2011, 31(7): 1474−1478.
|
[32] |
Nxele X, Klein A, Ndimba B K. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants[J]. South African Journal of Botany, 2017, 108: 261−266. doi: 10.1016/j.sajb.2016.11.003
|
[33] |
朱凌骏, 傅致远, 张金池, 等. 菌根真菌对榉树光合特性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(6):121−127.
Zhu L J, Fu Z Y, Zhang J C, et al. Effects of mycorrhizal fungi on photosynthetic characteristics of Zelkova serrata Thunb[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(6): 121−127.
|
[34] |
Ahammed G J, Wang M M, Zhou Y H, et al. The growth, photosynthesis and antioxidant defense responses of five vegetable crops to phenanthrene stress[J]. Ecotoxicology and Environmental Safety, 2012, 80: 132−139. doi: 10.1016/j.ecoenv.2012.02.015
|
[35] |
Bilger W, Björkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis[J]. Photosynthesis Research, 1990, 25(3): 173−185. doi: 10.1007/BF00033159
|