• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Furong, Qi Yaodong, Liu Haitao, Xie Caixiang, Song Jingyuan. Global potential suitable area and ecological characteristics of Moringa oleifera[J]. Journal of Beijing Forestry University, 2020, 42(10): 45-54. DOI: 10.12171/j.1000-1522.20190375
Citation: Yang Furong, Qi Yaodong, Liu Haitao, Xie Caixiang, Song Jingyuan. Global potential suitable area and ecological characteristics of Moringa oleifera[J]. Journal of Beijing Forestry University, 2020, 42(10): 45-54. DOI: 10.12171/j.1000-1522.20190375

Global potential suitable area and ecological characteristics of Moringa oleifera

More Information
  • Received Date: September 25, 2019
  • Revised Date: December 09, 2019
  • Available Online: September 10, 2020
  • Published Date: October 24, 2020
  •   Objective  This paper aims to predict the global potential distributing area and analyze the ecological features of different suitable areas for introduction and cultivation management measures of Moringa oleifera.
      Method  We predicted the potential distribution area by Maxent according to the 500 distribution points of M. oleifera, and analyzed the ecological features based on the environmental variables in different time scales and corresponding statistical method.
      Result  M. oleifera was widely distributed in tropical and subtropical areas. In the northern hemisphere, it is mainly distributed in South Asia, Southeast Asia and West Africa. In the southern hemisphere, it is largely located in South Africa, South America. The variables affecting its geographical distribution were six climate factors, including three extreme temperature indicators (mean temperature of the coldest quarter (bio11), min. temperature of the coldest month (bio6) and mean temperature of the warmest quarter (bio10)); SD of temperature seasonality (bio4) indicating the temperature variation amplitude; mean temperature of the wettest quarter (bio8) denoting the hydrothermal synchronization; precipitation of the wettest quarter (bio16) representing the extreme moisture condition.
      Conclusion  The potential distribution areas for M. oleifera were mainly located from north of 32°N to south of 29°S. Temperature is the main affecting environmental factor for M. oleifera distribution.
  • [1]
    肖正春, 张广伦. 神奇的辣木与人类生活[J]. 中国野生植物资源, 2016, 35(1):64−66.

    Xiao Z C, Zhang G L. The magic moringa and human life[J]. Chinese Wild Plant Resources, 2016, 35(1): 64−66.
    [2]
    沙子珺, 刘英华, 杨滨, 等. 辣木传统应用的文献考证[J]. 中国中药杂志, 2020, 45(12):2800−2807.

    Sha Z J, Liu Y H, Yang B, et al. Textual research on traditional application of Moringa[J]. China Journal of Chinese Materia Medica, 2020, 45(12): 2800−2807.
    [3]
    Paikra B K, Dhongade H K J, Gidwani B. Phytochemistry and pharmacology of Moringa oleifera Lam.[J]. Journal of Pharmacopuncture, 2017, 20(3): 194−200. doi: 10.3831/KPI.2017.20.022
    [4]
    Olurishe C, Kwanashie H, Zezi A, et al. Chronic administration of ethanol leaf extract of Moringa oleifera Lam. (Moringaceae) may compromise glycaemic efficacy of sitagliptin with no significant effect in retinopathy in a diabetic rat model[J]. Journal of Ethnopharmacology, 2016, 194: 895−903. doi: 10.1016/j.jep.2016.10.065
    [5]
    吴頔, 蔡志华, 魏烨昕, 等. 辣木作为新型植物性蛋白质饲料的研究进展[J]. 动物营养学报, 2013, 25(3):63−71.

    Wu D, Cai Z H, Wei Y X, et al. Research progress of Moringa oleifera Lam. as a new plant protein feed[J]. Chinese Journal of Animal Nutrition, 2013, 25(3): 63−71.
    [6]
    白旭华, 黎小清, 伍英. 辣木天然絮凝剂提取工艺研究初报[J]. 热带农业科技, 2013, 36(3):26−31.

    Bai X H, Li X Q, Wu Y. Preliminary report on extraction technology of bio-flocculant from Moringa oleifera[J]. Topical Agricultural Science&Technology, 2013, 36(3): 26−31.
    [7]
    段琼芬, 马李一, 余建兴, 等. 辣木油抗紫外线性能研究[J]. 食品科学, 2008, 29(9):118−121.

    Duan Q F, Ma L Y, Yu J X, et al. Study on anti-ultraviolet properties of Moringa oleifera Oil[J]. Food Science, 2008, 29(9): 118−121.
    [8]
    罗会英, 韩学琴, 邓红山, 等. 不同种源辣木生长差异性分析[J]. 热带农业科学, 2019, 39(3):16−20.

    Luo H Y, Han X Q, Deng H S, et al. Growth difference of Moringa oleifera Lam. from different provenances[J]. Chinese Journal of Tropical Agriculture, 2019, 39(3): 16−20.
    [9]
    李东, 赵一鹤. 辣木研究现状及发展趋势[J]. 西部林业科学, 2011, 47(5):32−38.

    Li D, Zhao Y H. Research status and development trend of Moringa[J]. Journal of West China Forestry Science, 2011, 47(5): 32−38.
    [10]
    Muhl Q E, Toit E S D, Robbertse P J. Moringa oleifera (Horseradish tree) leaf adaptation to temperature regimes[J]. International Journal of Agriculture & Biology, 2011, 13(6): 1021−1024.
    [11]
    Silva N, Mendes-Bonato A B, Sales J G C, et al. Meiotic behavior and pollen viability in Moringa oleifera (Moringaceae) cultivated in southern Brazil[J]. Genetics Molecular Research, 2011, 10(3): 1728−1732. doi: 10.4238/vol10-3gmr1490
    [12]
    苏瑶, 赵一鹤, 冯武, 等. 云南引种辣木籽营养成分分析与评价[J]. 西部林业科学, 2015, 44(4):142−145, 149.

    Su Y, Zhao Y H, Feng W, et al. Analysis and evaluation on nutritional components of Moringa oleifera in Yunnan[J]. Journal of West China Forestry Science, 2015, 44(4): 142−145, 149.
    [13]
    曾明莹, 傅咏梅, 张蜀, 等. 不同产地辣木叶提取物的含量测定及指纹图谱相似性评价[J]. 云南农业大学学报(自然科学), 2018, 33(3):485−493.

    Zeng M Y, Fu Y M, Zhang S, et al. Simultaneous determination of 4 flavonoids and chlorogenic acid of extract from Moringa oleiferam Lam. leaves and its UPLC fingerprint analysis[J]. Journal of Yunnan Agricultural University (Natural Science), 2018, 33(3): 485−493.
    [14]
    杜丽娟, 严红梅, 王丽, 等. 云南省不同地区辣木各器官中总硒及硒形态含量的比较研究[J]. 食品安全质量检测学报, 2018, 9(18):4929−4934.

    Du L J, Yan H M, Wang L, et al. Comparison of total selenium and selenium forms content in moringa organs in different regions of Yunnan Province[J]. Journal of Food Safety and Quality, 2018, 9(18): 4929−4934.
    [15]
    张琴, 张东方, 吴明丽, 等. 基于生态位模型预测天麻全球潜在适生区[J]. 植物生态学报, 2017, 41(7):770−778. doi: 10.17521/cjpe.2016.0380

    Zhang Q, Zhang D F, Wu M L, et al. Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models[J]. Chinese Journal of Plant Ecology, 2017, 41(7): 770−778. doi: 10.17521/cjpe.2016.0380
    [16]
    谢彩香, 张琴, 白光宇. 木本能源植物文冠果的生态特征及区划[J]. 植物科学学报, 2018, 36(2):229−236.

    Xie C X, Zhang Q, Bai G Y. Ecological characteristics and regionalization of Xanthoceras sorbifolia Bunge, a woody energy plant[J]. Plant Science Journal, 2018, 36(2): 229−236.
    [17]
    林宗铿, 张天翔, 杨俊杰. 应用Logistic方程确定辣木的抗寒性[J]. 福建农业学报, 2018, 33(5):512−515.

    Lin Z K, Zhang T X, Yang J J. Low-temperature tolerance of Moringa spp. determined by a Logistic model[J]. Fujian Journal of Agricultural Science, 2018, 33(5): 512−515.
    [18]
    Thurber M, Fahey J. Adoption of Moringa oleifera to combat under-nutrition viewed through the lens of the “Diffusion of Innovations” theory[J]. Ecology of Food & Nutrition, 2009, 48(3): 212−225.
    [19]
    王书瑞, 魏殿文, 姚琴, 等. 北方地区辣木育苗影响因子分析[J]. 国土与自然资源研究, 2017(6):65−68.

    Wang S R, Wei D W, Yao Q, et al. Analysis of seedling environmental factors on Moringa oleifera in the North of China[J]. Territory & Natural Resource Study, 2017(6): 65−68.
    [20]
    周利平, 李永, 姜绍红, 等. 普洱市辣木引种生境适应性初步研究[J]. 林业调查规划, 2015, 40(5):147−152.

    Zhou L P, Li Y, Jiang S H, et al. A preliminary study on the eco-adaptability of the introduction of Moringa oleifera in Pu’er City[J]. Forest Inventory and Planning, 2015, 40(5): 147−152.
    [21]
    彭兴民, 郑益兴, 段琼芬, 等. 印度传统辣木引种栽培研究[J]. 热带亚热带植物学报, 2008, 16(6):579−585.

    Peng X M, Zheng Y X, Duan Q F, et al. Studies on introduction and cultivation of Moringa oliferia[J]. Journal of Tropical and Subtropical Botany, 2008, 16(6): 579−585.
    [22]
    盘李军, 刘小金. 辣木的栽培及开发利用研究进展[J]. 广东林业科技, 2010, 26(3):71−77.

    Pan L J, Liu X J. Research overview on cultivation and utilization of Moringa oleifera Lam.[J]. Guangdong Forestry Science and Technology, 2010, 26(3): 71−77.
    [23]
    庄文晶, 祝秋萍, 陈福梓, 等. 辣木寒冻害指标初探[C]// 第35届中国气象学会年会S6应对气候变化、低碳发展与生态文明建设. 安徽: 中国气象学会, 2018: 622−625.

    Zhuang W J, Zhu Q P, Chen F Z, et al. Preliminary study on freezing damage index of Moringa oleifera Lam.[C]// Proceedings of the 35th Annual Meeting of Chinese Meteorological Society S6 on Climate Change, Low-Carbon Development and Ecological Civilization Construction. Anhui: Chinese Meteorological Society, 2018: 622−625.
    [24]
    陈江平. 辣木的种植技术[J]. 农业与技术, 2017, 37(3):73−74.

    Chen J P. Cultivation technology of Moringa oleifera Lam.[J]. Agriculture and Technology, 2017, 37(3): 73−74.
    [25]
    邓红山, 金杰, 罗会英, 等. 辣木在干热河谷地区不同品种种子质量表现[J]. 中国热带农业, 2019(4):46−48.

    Deng H S, Jin J, Luo H Y, et al. Seed quality performance of Moringa oleifera in different varieties in hot and dry area[J]. China Tropical Agriculture, 2019(4): 46−48.
    [26]
    Leone A, Spada A, Battezzati A, et al. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview[J]. International Journal of Molecular Sciences, 2015, 16(6): 12791−12835.
    [27]
    Woodward F I. Climate and plant distribution[M]. Cambridge: Cambridge University Press, 1987: 62−107.
    [28]
    廖承飞, 李贵华, 韩学琴, 等. 云南辣木产业发展的SWOT分析及对策[J]. 中国热带农业, 2016(2):13−16.

    Liao C F, Li G H, Han X Q, et al. SWOT analysis and countermeasures of Moringa oleifera Lam. industry development in Yunnan[J]. Industry Development, 2016(2): 13−16.
    [29]
    梁潘霞, 刘永贤, 沙国新, 等. 广西辣木产业发展现状及富硒辣木发展前景展望[J]. 热带农业科学, 2017, 37(8):88−92.

    Liang P X, Liu Y X, Sha G X, et al. Development status and prospect of selenium-rich Moringa in Guangxi[J]. Chinese Journal of Tropical Agriculture, 2017, 37(8): 88−92.
    [30]
    张宏达. 广东植物区系的特点[J]. 中山大学学报(自然科学版), 1962(1):1−34.

    Zhang H D. Tropical flora of Guangdong[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni (Natural Science), 1962(1): 1−34.
    [31]
    李许文, 刘文, 陈红锋, 等. 广州适宜的植物引种来源地与气候区选择研究[J]. 中国园林, 2016, 32(4):96−100.

    Li X W, Liu W, Chen H F, et al. A study on the selection of appropriate source regions and climate zones for Guangzhou to introduce plants[J]. Chinese Landscape Architecture, 2016, 32(4): 96−100.
  • Related Articles

    [1]Feng Xuejing, Ma Ling, Yang Shuang, Bo Wenhao, Chen Xuexun, Pang Xiaoming. Construction of genetic transformation system of ‘Jingzao 39’ callus[J]. Journal of Beijing Forestry University, 2024, 46(10): 74-80. DOI: 10.12171/j.1000-1522.20240055
    [2]PANG Hong-dong, XIANG Lin, ZHAO Kai-ge, LI Xiang, YANG Nan, CHEN Long-qing. Genetic transformation and functional characterization of Chimonanthus praecox SAMT gene in tobacco[J]. Journal of Beijing Forestry University, 2014, 36(5): 117-122. DOI: 10.13332/j.cnki.jbfu.2014.05.019
    [3]LI Yan, ZHAO De-gang. Ipt gene promoting shoot regeneration in genetic transformation of Eucommia ulmoides Oliv[J]. Journal of Beijing Forestry University, 2011, 33(6): 90-93.
    [4]ZENG Xiao-fang, ZHAO De-gang. Factors affecting transformation of Zanthoxylum piperitum DC. var. inerme Makino via Agrobacterium tumefaciens.[J]. Journal of Beijing Forestry University, 2011, 33(6): 80-85.
    [5]ZHAO Ling-li, SHI Shao-chuan, SUN Jia-qi, ZHANG Qi-xiang, GAO Yi-ke. Transformation of ground-cover Chrysanthemum with HsfA2 gene isolated from Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2011, 33(5): 97-102.
    [6]LONG Cui, PANG Xiao-ming, CAO Guan-lin, LIU Ying, ZHANG Zhi-yi. A study on the efficient protocol for transforming MdSPDS1 gene into Populus tomentosa Carr.[J]. Journal of Beijing Forestry University, 2010, 32(5): 21-26.
    [7]YU Lai, AN Xin-min, CAO Guan-lin, CHEN Zhong, ZHANG Zhi-yi. Genetic transformation of Populus tomentosa Carr. with sterility construct of PtAP3[J]. Journal of Beijing Forestry University, 2010, 32(5): 15-20.
    [8]QIN Ai-guang, LUO Xiao-fang. Transformation of transcription factor DREB1C gene into the fast-growing black locust mediated with Agrobacterium tumefaciens[J]. Journal of Beijing Forestry University, 2007, 29(6): 29-34. DOI: 10.13332/j.1000-1522.2007.06.011
    [9]LI Hui, CHEN Xiao-yang, LI Yun, LI Wei, DING Xia. Optimization of antibiotic concentration in genetic transformation of Populus alba[J]. Journal of Beijing Forestry University, 2005, 27(5): 118-121.
    [10]GAO Li-ping, BAO Man-zhu. Optimization of Agrobacterium-mediated transformation of Rosa hybrida[J]. Journal of Beijing Forestry University, 2005, 27(4): 60-64.
  • Cited by

    Periodical cited type(8)

    1. 罗茂,关志华,颜幼春,柴莹莹,刘佳琪,张佳敏,王忠红. 模拟根际生境下青甘韭生长与品质的差异分析. 高原农业. 2025(01): 65-72+132 .
    2. 黄小辉,吴焦焦,王玉书,冯大兰,孙向阳. 不同供氮水平的核桃幼苗生长及叶绿素荧光特性. 南京林业大学学报(自然科学版). 2022(02): 119-126 .
    3. 郑伟,师筝,龙美,廖允成. 黄绿叶突变体冀麦5265yg的光合生理特性分析. 中国农业科学. 2021(21): 4539-4551 .
    4. 王佳敏,宋海燕,陈金艺,张静,李素慧,陶建平,刘锦春. 多年生黑麦草对干旱胁迫下喀斯特异质生境的生长响应策略. 生态学报. 2020(13): 4566-4572 .
    5. 王生云,陶永明,司剑华. 不同配方轻基质对鳞皮云杉生长及光合参数的影响. 浙江林业科技. 2019(02): 50-55 .
    6. 乐佳兴,田秋玲,吴焦焦,高岚,张文,刘芸. 无患子幼苗的生长和光合特性对重庆低山丘陵区不同生境的响应. 北京林业大学学报. 2019(06): 75-85 . 本站查看
    7. 戴前莉,黄小辉,黄馨,唐龙波,朱恒星. 不同生境条件下凤丹生长及光合特性比较. 西南大学学报(自然科学版). 2018(09): 53-58 .
    8. 陶永明,司剑华. 不同轻基质配方对川西云杉幼苗生长的影响. 浙江林业科技. 2017(04): 66-70 .

    Other cited types(5)

Catalog

    Article views (1503) PDF downloads (87) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return