• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Songyang, Yu Hang, Luo Qinghu, Liu Ying, He Jingwen, Lin Yongming, Wang Daojie, Li Jian. Variation characteristics of soil particle composition and multifractal analysis of natural recovery forestland after damage under the disturbance of flood induced disasters[J]. Journal of Beijing Forestry University, 2020, 42(8): 112-121. DOI: 10.12171/j.1000-1522.20190388
Citation: Li Songyang, Yu Hang, Luo Qinghu, Liu Ying, He Jingwen, Lin Yongming, Wang Daojie, Li Jian. Variation characteristics of soil particle composition and multifractal analysis of natural recovery forestland after damage under the disturbance of flood induced disasters[J]. Journal of Beijing Forestry University, 2020, 42(8): 112-121. DOI: 10.12171/j.1000-1522.20190388

Variation characteristics of soil particle composition and multifractal analysis of natural recovery forestland after damage under the disturbance of flood induced disasters

More Information
  • Received Date: October 10, 2019
  • Revised Date: November 27, 2019
  • Available Online: August 18, 2020
  • Published Date: September 06, 2020
  •   Objective  Fractal dimension of soil particle composition can reflect soil particle distribution in detail. To accurately reveal the changing rules of forest soil particle during recovery process under the disturbance of disasters induced by flood, it is crucial to study the fractal dimensions in different damage stages of the forests.
      Method  Using the research method of substituting space with time, we chose three kinds of forest including secondary broadleaved forest, Chinese fir forest, and Moso bamboo forest in different damage states (undamaged, just damaged, recovered for 7 years after damage) as research sites. We collected soil samples of different soil layers and analyzed particle size, then the multifractal parameters were calculated based on fractal theory.
      Result  (1) Disaster interference had a significant impact on the distribution of soil particle in forestland. (2) After disaster interference, different recovery stages and different depth of soil affected all three kinds of woodlands, and the response of different woodlands to interference was different. (3) Through comprehensive analysis of particle size composition and multifractal parameters of three kinds of forestland under different restoration states, it can be seen that the soil texture of damaged forestland was worse than undamaged forestland. The variation trend of soil particle composition in different depth was different under varied damage conditions.
      Conclusion  In this study, the effects of flood induced disasters on secondary broadleaved forests, Chinese fir forests and Moso bamboo forest were clarified from the perspective of soil particle composition changes.
  • [1]
    金保明. 南平市“2010·6”特大暴雨洪水分析[J]. 水利科技, 2011(1):27−30.

    Jin B M. Analysis of Nanping “2010·6” rainstorm and flood[J]. Hydraulic Science and Technology, 2011(1): 27−30.
    [2]
    刘彤, 闫天池. 我国的主要气象灾害及其经济损失[J]. 自然灾害学报, 2011, 20(2):90−95.

    Liu T, Yan T C. Main meteorological disasters in China and their economic losses[J]. Journal of Natural Disasters, 2011, 20(2): 90−95.
    [3]
    杨云斌, 张建军, 李梁, 等. 晋西黄土区降雨过程对小流域产流的影响[J]. 北京林业大学学报, 2019, 41(3):109−114.

    Yang Y B, Zhang J J, Li L, et al. Effects of rainfall process on runoff in small watersheds in the Loess Plateau of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 109−114.
    [4]
    刘守江, 张斌, 杨清伟, 等. 汶川地震非规范滑坡体上植被的自然恢复能力研究:以彭州银厂沟谢家店子滑坡体为例[J]. 山地学报, 2010, 28(3):373−378. doi: 10.3969/j.issn.1008-2786.2010.03.016

    Liu S J, Zhang B, Yang Q W, et al. Research on the natural recovery of vegetation on the non-normative landslide mass in Wenchuan Earthquake: take landslide mass in Xiejiadian of Yinchanggou in Pengzhou as an example[J]. Mountain Research, 2010, 28(3): 373−378. doi: 10.3969/j.issn.1008-2786.2010.03.016
    [5]
    Wang Z Y, Shi W J, Liu D D. Continual erosion of bare rocks after the Wenchuan Earthquake and control strategie[J]. Journal of Asian Earth Sciences, 2011, 40: 915−925. doi: 10.1016/j.jseaes.2010.07.004
    [6]
    杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20):1896−1899. doi: 10.3321/j.issn:0023-074X.1993.20.010

    Yang P L, Luo Y P, Shi Y C. Soil fractal characteristics characterized by weight distribution of particle size[J]. Chinese Science Bulletin, 1993, 38(20): 1896−1899. doi: 10.3321/j.issn:0023-074X.1993.20.010
    [7]
    Giménez D, Perfect E, Rawls W J, et al. Fractal models for predicting soil hydraulic properties: a review[J]. Engineering Geology, 1997, 48(3/4): 161−183.
    [8]
    Huang G H, Zhang R. Evaluation of soil water retention curve with the pore-solid fractal mode[J]. Geoderma, 2005, 27(1−2): 52−61.
    [9]
    方肖晨, 王春红, 张荣华, 等. 伏牛山区迎河小流域不同土地利用类型的土壤粒径分布特征[J]. 中国水土保持科学, 2017, 15(3):9−16.

    Fang X C, Wang C H, Zhang R H, et al. Soil particle size distribution characteristics under different land use types in Yinghe Watershed of Funiu Mountain Area[J]. Science of Soil and Water Conservation, 2017, 15(3): 9−16.
    [10]
    王德, 傅伯杰, 陈利顶, 等. 不同土地利用类型下土壤粒径分形分析:以黄土丘陵沟壑区为例[J]. 生态学报, 2007, 27(7):3081−3089. doi: 10.3321/j.issn:1000-0933.2007.07.050

    Wang D, Fu B J, Chen L D, et al. Fractal analysis on soil particle size distributions under different land-use types: a case study in the loess hilly areas of the Loess Plateau, China[J]. Acta Ecologica Sinica, 2007, 27(7): 3081−3089. doi: 10.3321/j.issn:1000-0933.2007.07.050
    [11]
    张佳瑞, 王金满, 祝宇成, 等. 分形理论在土壤学应用中的研究进展[J]. 土壤通报, 2017, 48(1):221−228.

    Zhang J R, Wang J M, Zhu Y C, et al. Application of fractal theory on pedology: a review[J]. Chinese Journal of Soil Science, 2017, 48(1): 221−228.
    [12]
    Filgueira R R, Fournier L L, Cerisola C I, et al. Particle-size distribution in soils: a critical study of the fractal model validation[J]. Geoderma, 2006, 134(3−4): 327−334. doi: 10.1016/j.geoderma.2006.03.008
    [13]
    战海霞, 张光灿, 刘霞, 等. 沂蒙山林区不同植物群落的土壤颗粒分形与水分入渗特征[J]. 中国水土保持科学, 2009, 7(1):49−56. doi: 10.3969/j.issn.1672-3007.2009.01.009

    Zhan H X, Zhang G C, Liu X, et al. Fractal features of soil particle size distribution and infiltration characteristics under different vegetation communities in the forestland of Yimeng Mountains area[J]. Science of Soil and Water Conservation, 2009, 7(1): 49−56. doi: 10.3969/j.issn.1672-3007.2009.01.009
    [14]
    茹豪, 张建军, 李玉婷, 等. 黄土高原土壤粒径分形特征及其对土壤侵蚀的影响[J]. 农业机械学报, 2015, 46(4):176−182. doi: 10.6041/j.issn.1000-1298.2015.04.026

    Ru H, Zhang J J, Li Y T, et al. Fractal features of soil particle size distributions and its effect on soil erosion of Loess Plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 176−182. doi: 10.6041/j.issn.1000-1298.2015.04.026
    [15]
    罗清虎, 吴建召, 崔羽, 等. 洪涝灾害干扰下受损自然恢复林地土壤基本性状及分形维数特征[J]. 应用与环境生物学报, 2019, 25(1):29−37.

    Luo Q H, Wu J Z, Cui Y, et al. Characteristics of soil properties and fractal dimensions of destroyed and naturally restored forest land under flood disaster disturbance[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(1): 29−37.
    [16]
    Grout H, Tarquis A M, Wisner M R. Multifractal analysis of particle size distributions in soil[J]. Environment Science Technology, 1998, 32(9): 1176−1182. doi: 10.1021/es9704343
    [17]
    管孝艳, 杨培岭, 任树梅, 等. 基于多重分形理论的壤土粒径分布非均匀性分析[J]. 应用基础与工程科学学报, 2009, 17(2):196−205. doi: 10.3969/j.issn.1005-0930.2009.02.005

    Guan X Y, Yang P L, Ren S M, et al. Heterogeneity analysis of particle size distribution for loamy soil based on multifractal theory[J]. Journal of Basic Science and Engineering, 2009, 17(2): 196−205. doi: 10.3969/j.issn.1005-0930.2009.02.005
    [18]
    孙哲, 王一博, 刘国华, 等. 基于多重分形理论的多年冻土区高寒草甸退化过程中土壤粒径分析[J]. 冰川冻土, 2015, 37(4):980−990.

    Sun Z, Wang Y B, Liu G H, et al. Heterogeneity analysis of soil particle size distribution in the process of degradation of alpine meadow in the permafrost regions based on multifractal theory[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 980−990.
    [19]
    南平市林业局. 南平市2010年上半年林工调度简报[N]. 闽北林业工业动态, 2010−07−05(6).

    Nanping Forestry Bureau. Briefing on forestry work scheduling for Nanping in the first half of 2010[N]. Forestry Industry Dynamics in Northern Fujian Province, 2010−07−05(6).
    [20]
    周炜星, 吴韬, 于遵宏. 多重分形奇异谱的几何特性Ⅱ.配分函数法[J]. 华东理工大学学报, 2000, 26(4):390−395.

    Zhou W X, Wu T, Yu Z H. Geometrical characteristics of singularity spectra of multifractals (II): partition function definition[J]. Journal of East China University of Science and Technology, 2000, 26(4): 390−395.
    [21]
    Ferreiro J P, Vidal V E. Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability[J]. Geoderma, 2010, 160(1): 64−73. doi: 10.1016/j.geoderma.2009.11.019
    [22]
    李卓, 冯浩, 吴普特, 等. 砂粒含量对土壤水分蓄持能力影响模拟试验研究[J]. 水土保持学报, 2009, 23(3):204−208. doi: 10.3321/j.issn:1009-2242.2009.03.044

    Li Z, Feng H, Wu P T, et al. Simulated experiment on effects of soil clay particle content on soil water holding capacity[J]. Journal of Soil and Water Conservation, 2009, 23(3): 204−208. doi: 10.3321/j.issn:1009-2242.2009.03.044
    [23]
    甘凤玲, 王涛, 何炳辉, 等. 汶川震区不同植被下土壤组成及其分型特征[J]. 水土保持研究, 2008, 25(1):84−91.

    Gan F L, Wang T, He B H, et al. Fractal feature of soil in the different types of vegetation in Wenchuan Earthquake zone[J]. Research of Soil and Water Conservation, 2008, 25(1): 84−91.
    [24]
    谢贤健, 韦方强. 泥石流频发区不同盖度草地土壤颗粒的分形特征[J]. 水土保持学报, 2011, 25(4):202−206.

    Xie X J, Wei F Q. Characteristics of soil particle fractal dimension under different coverage grassland of the area with high-frequency debris flow[J]. Journal of Soil and Water Conservation, 2011, 25(4): 202−206.
    [25]
    Wang Y, Shao M, Gao L. Spatial variability of soil particle size distribution and fractal features in water-wind erosion crisscross region on the Loess Plateau of China[J]. Soil Science, 2010, 175(12): 579−585. doi: 10.1097/SS.0b013e3181fda413
    [26]
    王冬冬, 高磊, 陈效民, 等. 红壤丘陵区坡地土壤颗粒组成的空间分布特征研究[J]. 土壤, 2016, 48(2):361−367.

    Wang D D, Gao L, Chen X M, et al. Spatial distribution characteristics of soil particle composition of slope land red soil region[J]. Soils, 2016, 48(2): 361−367.
    [27]
    白一茹, 汪友科. 黄土丘陵区土壤粒径分布单重分形和多重分形特征[J]. 农业机械学报, 2012, 43(5):43−48. doi: 10.6041/j.issn.1000-1298.2012.05.008

    Bai Y R, Wang Y K. Monofractal and multifractal analysis on soil particle distribution in hilly and gully areas of the Loess Plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(5): 43−48. doi: 10.6041/j.issn.1000-1298.2012.05.008
  • Cited by

    Periodical cited type(25)

    1. 成思丽,王丹,贺斌,胡兆柳,陈林,唐军荣,陈诗,许玉兰,蔡年辉. 不同苗龄云南松苗木平茬根系形态特征分析. 浙江农林大学学报. 2024(02): 322-332 .
    2. 蔡年辉,胡兆柳,贺斌,成思丽,陈林,唐军荣,陈诗,许玉兰,李根前. 云南松苗木萌枝能力对截干高度的响应. 西北农林科技大学学报(自然科学版). 2024(04): 85-94 .
    3. 向凌潇,张俊威,李建明. 灌溉量与灌溉频率对番茄根系生长、产量和营养元素吸收的影响. 西北农林科技大学学报(自然科学版). 2024(05): 80-92+123 .
    4. 崔远远,张征云,刘鹏,张运春,张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响. 生态环境学报. 2023(01): 158-165 .
    5. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    6. 胡静,张桥英,张运春,崔远远,谭晶华. 水位对若尔盖高原湿地植物群落结构和植物功能性状的影响. 绿色科技. 2023(06): 22-29 .
    7. 石海涛,张大才. 干旱胁迫对高寒草甸不同功能群植物的影响. 林业科技通讯. 2023(08): 48-51 .
    8. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 植物生长调节剂对云南松苗木根系形态的影响. 河南农业大学学报. 2022(03): 381-391 .
    9. 代丽丽,张传生,石研. 黄栌个体生长情况与根系结构的关系探究. 现代园艺. 2022(12): 6-8 .
    10. 张燕,葛江琨,李洪亮,杨晨,戴振芬,陈洪年. 高陡岩质边坡体裂隙率与植物生长速度的关系研究. 安全与环境工程. 2022(04): 93-100 .
    11. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 云南松苗木根系可塑性对平茬高度的响应. 云南大学学报(自然科学版). 2022(06): 1305-1313 .
    12. 杜志敏,向凌云,杜凯敏,杨文玲,王继雯,雷高,郭雪白,郭亮,周静,巩涛,陈国参,甄静. 磷灰石、石灰对Cd胁迫下黑麦草根形态及Cd吸收影响研究. 农业环境科学学报. 2021(01): 92-101 .
    13. 贾林巧,陈光水,张礼宏,陈廷廷,姜琦,陈宇辉,范爱连,王雪. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应. 应用生态学报. 2021(02): 529-537 .
    14. 李宝财,梁文汇,蓝金宣,李军集,杨卓颖,黄晓露. 不同沙土配比基质对岗松幼苗根系形态及营养吸收的影响. 广西林业科学. 2021(02): 157-163 .
    15. 郑诚,温仲明,郭倩,樊勇明,杨玉婷,高飞. 基于MaxEnt模型的延河流域草本植物适生分布与功能性状分析. 生态学报. 2021(17): 6825-6835 .
    16. 李佳佳,魏多,徐翎清,王秋红,马龙彪,刘大丽. 甜菜对低氮胁迫的形态学响应机制. 中国农学通报. 2021(36): 41-46 .
    17. 张祖衔,邓薇,李春,徐洪伟,周晓馥. 施加枯草芽孢杆菌和哈茨木霉对黄瓜幼苗生长的影响. 北方园艺. 2021(23): 11-20 .
    18. 张岚,张玲卫,刘会良,陈艳锋. 降水增加对古尔班通古特沙漠两种短命植物生长的影响. 应用生态学报. 2020(01): 9-16 .
    19. 李金航,周玫,朱济友,徐程扬. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究. 北京林业大学学报. 2020(03): 65-77 . 本站查看
    20. 李青,祖艳群,王吉秀,杨晶祥,牛秀艳. 铅锌矿区重金属胁迫对野生小花南芥根系特征的影响. 贵州农业科学. 2020(04): 148-152 .
    21. 吴焦焦,张文,高岚,谭星,乐佳兴,田秋玲,冯大兰,黄小辉,齐代华,许一丰,梁洪海,吴铭河,黄诗夏,刘芸. 三峡库区次生黄栌灌木林的群落特征及种间联结性. 生态学报. 2020(12): 4053-4063 .
    22. 李煜,赵国红,尹峰,宁立波. 岩质边坡覆绿植物的根系形态变化特征及影响因子研究. 湖南师范大学自然科学学报. 2020(02): 45-52+81 .
    23. 王效瑾,高巍,赵鹏,于冲冲,刘红恩,聂兆君,秦世玉,李畅. 小麦幼苗根系形态对镉胁迫的响应. 农业环境科学学报. 2019(06): 1218-1225 .
    24. 刘海,韦莉,任永胜,易艳灵,杨倩,李贤伟,范川. 柏木根系分泌物对栾树细根形态及N、P含量的影响. 西北植物学报. 2019(09): 1661-1669 .
    25. 周华健,冯文新,赵国红,尹峰,宁立波,白冰珂. 黄栌在高陡岩质边坡覆绿中的环境适应特征. 湖南师范大学自然科学学报. 2019(05): 60-64+80 .

    Other cited types(18)

Catalog

    Article views (1680) PDF downloads (38) Cited by(43)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return