Citation: | Zhang Jialong, Xu Hui. Establishment of remote sensing based model to estimate the aboveground biomass of Pinus densata for permanent sample plots from national forestry inventory[J]. Journal of Beijing Forestry University, 2020, 42(7): 1-11. DOI: 10.12171/j.1000-1522.20190394 |
[1] |
唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000, 36(增刊 l): 19−27.
Tang S Z, Zhang H R, Xu H. Study on establish and estimate method of compatible biomass model[J]. Scientia Silvae Sinicae, 2000, 36(Suppl. 1): 19−27.
|
[2] |
孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006: 295−300.
Meng X Y. Forest mensuration[M]. 3rd ed. Beijing: China Forestry Publishing House, 2006: 295−300.
|
[3] |
Lu D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. International Journal of Remote Sensing, 2005, 26(12): 2509−2525. doi: 10.1080/01431160500142145
|
[4] |
Powell S L, Cohen W B, Healey S P, et al. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches[J]. Remote Sensing of Environment, 2010, 114(5): 1053−1068. doi: 10.1016/j.rse.2009.12.018
|
[5] |
Townsend P A, Singh A, Foster J R, et al. A general Landsat model to predict canopy defoliation in broadleaf deciduous forests[J]. Remote Sensing of Environment, 2012, 119(8): 255−265.
|
[6] |
Carmona F, Rivas R, Caselles V. Development of a general model to estimate the instantaneous, daily, and daytime net radiation with satellite data on clear-sky days[J]. Remote Sensing of Environment, 2015, 171: 1−13. doi: 10.1016/j.rse.2015.10.003
|
[7] |
Roy D, Zhang H, Ju J, et al. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance[J]. Remote Sensing of Environment, 2016, 176: 255−271. doi: 10.1016/j.rse.2016.01.023
|
[8] |
West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology[J]. Science, 1997, 276: 122−126. doi: 10.1126/science.276.5309.122
|
[9] |
West G B, Brown J H, Enquist B J. A general model for the structure and allometry of plant vascular systems[J]. Nature, 1999, 400: 664−667. doi: 10.1038/23251
|
[10] |
曾伟生, 唐守正. 一个新的通用性相对生长生物量模型[J]. 林业科学, 2012, 48(1):48−52. doi: 10.11707/j.1001-7488.20120109
Zeng W S, Tang S Z. A new general biomass allometric model[J]. Scientia Silvae Sinicae, 2012, 48(1): 48−52. doi: 10.11707/j.1001-7488.20120109
|
[11] |
符利勇, 唐守正, 张会儒, 等. 东北地区两个主要树种地上生物量通用方程构建[J]. 生态学报, 2015, 35(1):150−157.
Fu L Y, Tang S Z, Zhang H R, et al. Generalized above-ground biomass equations for two main species in northeast China[J]. Acta Ecologica Sinica, 2015, 35(1): 150−157.
|
[12] |
汤旭光, 刘殿伟, 王宗明, 等. 森林地上生物量遥感估算研究进展[J]. 生态学杂志, 2012, 5(5):1311−1318.
Tang X G, Liu D W, Wang Z M, et al. Estimation of forest aboveground biomass based on remote sensing data: a review[J]. Chinese Journal of Ecology, 2012, 5(5): 1311−1318.
|
[13] |
刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1):62−74. doi: 10.11834/jrs.20154108
Liu Q, Yang L, Liu Q H, et al. Review of forest above ground biomass inversion methods based on remote sensing technology[J]. Journal of Remote Sensing, 2015, 19(1): 62−74. doi: 10.11834/jrs.20154108
|
[14] |
Cohen R, Kaino J, Okello J, et al. Propagating uncertainty to estimates of above-ground biomass for Kenyan mangroves: a scaling procedure from tree to landscape level[J]. Forest Ecology and Management, 2013, 310(1): 968−982.
|
[15] |
Main-Knorn M, Cohen W B, Kennedy R E, et al. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach[J]. Remote Sensing of Environment, 2013, 139(4): 277−290.
|
[16] |
Woodcock C E, Richard A, Martha A, et al. Free access to Landsat imagery[J]. Science , 2008, 320: 1011.
|
[17] |
Fassnacht F, Hartig F, Latifi H, et al. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass[J]. Remote Sensing of Environment, 2014, 154: 102−114. doi: 10.1016/j.rse.2014.07.028
|
[18] |
Avitabile V, Baccini A, Friedl M A, et al. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda[J]. Remote Sensing of Environment, 2012, 117(1): 366−380.
|
[19] |
Chi H, Sun G, Huang J, et al. Estimation of forest aboveground biomass in Changbai Mountain region using ICESat/GLAS and Landsat/TM data[J]. Remote Sensing, 2017, 9(7): 707−732. doi: 10.3390/rs9070707
|
[20] |
宋丽楠. 帽儿山林场森林生物量估测及时空动态格局分析[D]. 哈尔滨: 东北林业大学, 2010.
Song L N. Estimation of forest biomass and its temporal and spatial distribution patterns analysis in Maoershan Forest Farm[D]. Harbin: Northeast Forestry University, 2010.
|
[21] |
李凤凤. 泗阳县杨树生物量遥感估算及其动态变化分析[D]. 南京: 南京林业大学, 2011.
Li F F. Remote sensing estimation of Siyang County polar biomass and dynamic analysis[D]. Nanjing: Nanjing Forestry University, 2011.
|
[22] |
Pflugmacher D, Cohen W B, Kennedy R E, et al. Using Landsat-derived disturbance and recovery history and Lidar to map forest biomass dynamics[J]. Remote Sensing of Environment, 2014, 151(8): 124−137.
|
[23] |
Gómez C, White J C, Wulder M A, et al. Historical forest biomass dynamics modelled with Landsat spectral trajectories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 14−28. doi: 10.1016/j.isprsjprs.2014.03.008
|
[24] |
Brandt J S, Kuemmerle T, Li H M, et al. Using Landsat imagery to map forest change in southwest China in response to the national logging ban and ecotourism development[J]. Remote Sensing of Environment, 2012, 121: 358−369. doi: 10.1016/j.rse.2012.02.010
|
[25] |
胥辉, 岳彩荣.基于遥感技术的香格里拉县森林景观变化与森林生物量估测研究[M]. 昆明: 云南科技出版社, 2014: 1−10.
Xu H, Yue C R. Study on forest landscape change and forest biomass estimation in Shangri-La based on remote sensing technology[M]. Kunming: Yunnan Science and Technology Press, 2014: 1−10.
|
[26] |
张加龙, 胥辉, 岳彩荣, 等. 基于CA-Markov的香格里拉县森林景观格局变化及预测[J]. 东北林业大学学报, 2013, 41(6):46−49, 65. doi: 10.3969/j.issn.1000-5382.2013.06.012
Zhang J L, Xu H, Yue C R. Change and prediction of forest landscape pattern in Shangri-La County based on CA-Markov[J]. Journal of Northwest Forestry University, 2013, 41(6): 46−49, 65. doi: 10.3969/j.issn.1000-5382.2013.06.012
|
[27] |
Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 all sensors[J]. Remote Sensing of Environment, 2009, 113(5): 893−903. doi: 10.1016/j.rse.2009.01.007
|
[28] |
Yan E, Lin H, Wang G, et al. Multi-resolution mapping and accuracy assessment of forest carbon density by combining image and plot data from a nested and clustering sampling design[J]. Remote Sensing, 2016, 8(7): 571−592. doi: 10.3390/rs8070571
|
[29] |
Berk A, Bernstein L, Anderson G, et al. Modtran cloud and multiple scattering upgrades with application to aviris[J]. Remote Sensing of Environment, 1998, 65(3): 367−375. doi: 10.1016/S0034-4257(98)00045-5
|
[30] |
Adlergolden S M, Berk A, Richtsmeier S C, et al. Status of atmospheric correction using a MODTRAN4-based algorithm[J]. Proceedings of SPIE-the International Society for Optical Engineering, 2000, 4049: 11−21.
|
[31] |
Nichol J, Hang L K, Sing W M. Empirical correction of low sun angle images in steeply sloping terrain: a slope-matching technique[J]. International Journal of Remote Sensing, 2006, 27(3): 629−635. doi: 10.1080/02781070500293414
|
[32] |
Zhang J L, Lu C, Xu H, et al. Estimating aboveground biomass of Pinus densata-dominated forests using Landsat time series and permanent sample plot data[J]. Journal of Forestry Research, 2019, 30(5): 1689−1706. doi: 10.1007/s11676-018-0713-7
|
[33] |
Foody G M, Boyd D S, Cutler M E. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J]. Remote Sensing of Environment, 2003, 85(4): 463−474. doi: 10.1016/S0034-4257(03)00039-7
|
[34] |
Huete A, Justice C, Liu H. Development of vegetation and soil indices for Modis-eos[J]. Remote Sensing of Environment, 1994, 49(3): 224−234. doi: 10.1016/0034-4257(94)90018-3
|
[35] |
Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127−150. doi: 10.1016/0034-4257(79)90013-0
|
[36] |
Clark M L, Roberts D A, Ewel J J, et al. Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors[J]. Remote Sensing of Environment, 2011, 115(11): 2931−2942. doi: 10.1016/j.rse.2010.08.029
|
[37] |
Güneralp İ, Filippi A M, Randall J. Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling[J]. International Journal of Applied Earth Observations and Geoinformation, 2014, 33: 119−126. doi: 10.1016/j.jag.2014.05.004
|
[38] |
Powell S L, Cohen W B, Yang Z, et al. Quantification of impervious surface in the snohomish water resources inventory area of western washington from 1972–2006[J]. Remote Sensing of Environment, 2008, 112(4): 1895−1908.
|
[39] |
Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. Studies in Media and Communication, 1973, 3(6): 610−621.
|
[40] |
Boegh E, Soegaard H, Broge N, et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture[J]. Remote Sensing of Environment, 2002, 81(2): 179−193.
|
[41] |
孙雪莲. 基于Landsat8-OLI的香格里拉高山松林生物量遥感估测模型研究[D]. 昆明: 西南林业大学, 2016.
Sun X L. Biomass estimation model of Pinus densata forests in Shangri-La City based on Landsat8-OLI by remote sensing[D]. Kunming: Southwest Forestry University, 2016.
|
[42] |
Cnaan A, Laird N M, Slasor P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data[J]. Statistics in Medicine, 1997, 16(20): 2349−2380.
|
[43] |
Bolker B M, Brooks M E, Clark C J, et al. Generalized linear mixed models: a practical guide for ecology and evolution[J]. Trends in Ecology & Evolution, 2009, 24(3): 127−135.
|
[44] |
曾伟生, 唐守正, 夏忠胜, 等. 利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程[J]. 林业科学研究, 2011, 24(3):285−291.
Zeng W S, Tang S Z, Xia Z S, et al. Using linear mixed model and dummy variable model approaches to construct generalized single: tree biomass equations in Guizhou[J]. Forest Research, 2011, 24(3): 285−291.
|
[45] |
张加龙, 胥辉, 陆驰. 应用Landsat8 OLI和GBRT对高山松地上生物量的估测[J]. 东北林业大学学报, 2018, 46(8):25−30. doi: 10.3969/j.issn.1000-5382.2018.08.005
Zhang J L, Xu H, Lu C. Estimation of the above ground biomass of Pinus densata based on Landsat 8 OLI and gradient boost regression tree[J]. Journal of Northwest Forestry University, 2018, 46(8): 25−30. doi: 10.3969/j.issn.1000-5382.2018.08.005
|
[46] |
黄二辉, 潘德炉, 李淑菁, 等. 水下剖面光谱原始数据异常值的判断方法[J]. 海洋学研究, 2006, 24(1):91−96. doi: 10.3969/j.issn.1001-909X.2006.01.011
Huang E H, Pan D L, Li S J, et al. Comparing methods for identifying the outliers in the in-water profile spectral data[J]. Journal of Marine Sciences, 2006, 24(1): 91−96. doi: 10.3969/j.issn.1001-909X.2006.01.011
|
[47] |
Lu D S, Chen Q, Wang G X, et al. Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates [J/OL]. International Journal of Forestry Research, 2012, 16[2019−11−13]. https://www.hindawi.com/journals/ijfr/2012/436537/.
|
[48] |
Lu D, Chen Q, Wang G X, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2014, 9(1): 63−105.
|
[49] |
傅煜.区域尺度森林地上生物量的不确定性度量研究[D]. 北京: 中国林业科学研究院, 2015.
Fu Y. Uncertainty assessment for regional-level forest above-ground biomass estimates[D]. Beijing: Chinese Academy of Forestry, 2015.
|
[50] |
Antonova S, Thiel C, Höfle B, et al. Estimating tree height from TanDEM-X data at the northwestern Canadian treeline[J/OL]. Remote Sensing of Environment, 2019, 231:111251 [2019−12−15]. https://doi. org/10.1016/j. rse. 2019. 111251.
|
[51] |
张巍巍, 冯仲科, 汪笑安, 等. 基于TM影像的林木参数提取和树高估测[J]. 中南林业科技大学学报, 2013, 33(9):27−31. doi: 10.3969/j.issn.1673-923X.2013.09.007
Zhang W W, Feng Z K, Wang X A, et al. Trees parameter extraction and tree height estimation based on TM images[J]. Journal of Central South University of Forestry & Technology, 2013, 33(9): 27−31. doi: 10.3969/j.issn.1673-923X.2013.09.007
|
[52] |
吴迪, 范文义. 激光雷达协同多角度光学遥感数据反演树高[J]. 北京林业大学学报, 2014, 36(4):8−15.
Wu D, Fan W Y. Forest canopy height estimation using LiDAR and optical multi-angler data[J]. Journal of Beijing Forestry University, 2014, 36(4): 8−15.
|
1. |
王家强,郑锋振. 耐热嗜酸β-甘露聚糖酶TaMan5A在毕赤酵母中高效表达及酶学性质研究. 食品与发酵工业. 2024(03): 52-58 .
![]() | |
2. |
王旭洁,姚三川,雒翠梅,母军,漆楚生. 路易斯酸预处理对木材热降解特性的影响. 北京林业大学学报. 2024(11): 133-140 .
![]() | |
3. |
蔡金澄,雒翠梅,王旭洁,母军. 高温热处理对挪威云杉及泡桐木振动性能和化学组分的影响. 林产工业. 2023(11): 14-20 .
![]() |