• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Jialong, Xu Hui. Establishment of remote sensing based model to estimate the aboveground biomass of Pinus densata for permanent sample plots from national forestry inventory[J]. Journal of Beijing Forestry University, 2020, 42(7): 1-11. DOI: 10.12171/j.1000-1522.20190394
Citation: Zhang Jialong, Xu Hui. Establishment of remote sensing based model to estimate the aboveground biomass of Pinus densata for permanent sample plots from national forestry inventory[J]. Journal of Beijing Forestry University, 2020, 42(7): 1-11. DOI: 10.12171/j.1000-1522.20190394

Establishment of remote sensing based model to estimate the aboveground biomass of Pinus densata for permanent sample plots from national forestry inventory

More Information
  • Received Date: October 14, 2019
  • Revised Date: November 26, 2019
  • Available Online: July 03, 2020
  • Published Date: August 13, 2020
  •   Objective  This study aims to establish a remote sensing based parametric model for estimation of aboveground biomass (AGB) of Pinus densata for permanent sample plots, which can be used for rapid and accurate biomass estimation in the future with previous sample plots, or obtaining biomass quickly with less field work.
      Method  Based on the change of remote sensing images and permanent sample plots, linear mixed model was used to improve the accuracy of biomass estimation. Based on the permanent sample plots in the 7 survey years of 1987, 1992, 1997, 2002, 2007, 2012, 2017 from the national forest inventory and corresponding years of Landsat TM and OLI images, firstly the images were preprocessed including radiometric correction, atmospheric correction, geometric correction and topographic correction. The original bands, ratio factors, vegetation indices, image enhancement information, textures, fraction after spectral mixture analysis, leaf area index were extracted. Then, the changes of remote sensing spectral variables were derived. According to the distribution of Pinus densata from the forest management inventory, the topographic factors were selected as the fixed and random effects for the linear mixed model. The multiple linear regression, non-linear regression, geographically weighted regression, and linear mixed model were used to establish the static models of the AGB estimation for Pinus densata. The change models with and without tree height participation were developed based on the change of remote sensing spectral variables. Finally, the different modeling and validation results were compared and validated, and the optimal results were selected as the estimation model and validated.
      Result  (1) Comparing the static data for modeling and validation, the linear mixed model with the plot number as fixed effect and the slope grade as random effect got the highest R2 of 0.75. The prediction result showed that either using the remaining 20 training datasets or the observed data in the year of 2017 for validation, the prediction accuracy was low. (2) Comparing the change data for modeling and validation, the linear mixed model with the plot number as fixed factor, slope grade as random factor and remote sensing change factors as independent variables performed the best with R2 of 0.70, the predicted P value was (68.86 ± 11.93)%. When increasing the change of average tree height, the fitting R2 was 0.79, the P value was (73.39 ± 6.18)%. (3) The change model with or without the participation of tree height got a fitting and prediction accuracy of 80%, and its prediction accuracy reached the prediction accuracy of non-parametric models.
      Conclusion  The accuracy of fitting and prediction based on the change variables is improved compared with the static model. The accuracy for estimating AGB of Pinus densata has been greatly improved with linear mixed model, remote sensing and topographic factors. The developed model of estimating the AGB of Pinus densata with remote sensing change factors has effectively compensated the deficiency of the static optical images, and it can be used for estimation of other years after validation.
  • [1]
    唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000, 36(增刊 l): 19−27.

    Tang S Z, Zhang H R, Xu H. Study on establish and estimate method of compatible biomass model[J]. Scientia Silvae Sinicae, 2000, 36(Suppl. 1): 19−27.
    [2]
    孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006: 295−300.

    Meng X Y. Forest mensuration[M]. 3rd ed. Beijing: China Forestry Publishing House, 2006: 295−300.
    [3]
    Lu D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. International Journal of Remote Sensing, 2005, 26(12): 2509−2525. doi: 10.1080/01431160500142145
    [4]
    Powell S L, Cohen W B, Healey S P, et al. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches[J]. Remote Sensing of Environment, 2010, 114(5): 1053−1068. doi: 10.1016/j.rse.2009.12.018
    [5]
    Townsend P A, Singh A, Foster J R, et al. A general Landsat model to predict canopy defoliation in broadleaf deciduous forests[J]. Remote Sensing of Environment, 2012, 119(8): 255−265.
    [6]
    Carmona F, Rivas R, Caselles V. Development of a general model to estimate the instantaneous, daily, and daytime net radiation with satellite data on clear-sky days[J]. Remote Sensing of Environment, 2015, 171: 1−13. doi: 10.1016/j.rse.2015.10.003
    [7]
    Roy D, Zhang H, Ju J, et al. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance[J]. Remote Sensing of Environment, 2016, 176: 255−271. doi: 10.1016/j.rse.2016.01.023
    [8]
    West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology[J]. Science, 1997, 276: 122−126. doi: 10.1126/science.276.5309.122
    [9]
    West G B, Brown J H, Enquist B J. A general model for the structure and allometry of plant vascular systems[J]. Nature, 1999, 400: 664−667. doi: 10.1038/23251
    [10]
    曾伟生, 唐守正. 一个新的通用性相对生长生物量模型[J]. 林业科学, 2012, 48(1):48−52. doi: 10.11707/j.1001-7488.20120109

    Zeng W S, Tang S Z. A new general biomass allometric model[J]. Scientia Silvae Sinicae, 2012, 48(1): 48−52. doi: 10.11707/j.1001-7488.20120109
    [11]
    符利勇, 唐守正, 张会儒, 等. 东北地区两个主要树种地上生物量通用方程构建[J]. 生态学报, 2015, 35(1):150−157.

    Fu L Y, Tang S Z, Zhang H R, et al. Generalized above-ground biomass equations for two main species in northeast China[J]. Acta Ecologica Sinica, 2015, 35(1): 150−157.
    [12]
    汤旭光, 刘殿伟, 王宗明, 等. 森林地上生物量遥感估算研究进展[J]. 生态学杂志, 2012, 5(5):1311−1318.

    Tang X G, Liu D W, Wang Z M, et al. Estimation of forest aboveground biomass based on remote sensing data: a review[J]. Chinese Journal of Ecology, 2012, 5(5): 1311−1318.
    [13]
    刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1):62−74. doi: 10.11834/jrs.20154108

    Liu Q, Yang L, Liu Q H, et al. Review of forest above ground biomass inversion methods based on remote sensing technology[J]. Journal of Remote Sensing, 2015, 19(1): 62−74. doi: 10.11834/jrs.20154108
    [14]
    Cohen R, Kaino J, Okello J, et al. Propagating uncertainty to estimates of above-ground biomass for Kenyan mangroves: a scaling procedure from tree to landscape level[J]. Forest Ecology and Management, 2013, 310(1): 968−982.
    [15]
    Main-Knorn M, Cohen W B, Kennedy R E, et al. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach[J]. Remote Sensing of Environment, 2013, 139(4): 277−290.
    [16]
    Woodcock C E, Richard A, Martha A, et al. Free access to Landsat imagery[J]. Science , 2008, 320: 1011.
    [17]
    Fassnacht F, Hartig F, Latifi H, et al. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass[J]. Remote Sensing of Environment, 2014, 154: 102−114. doi: 10.1016/j.rse.2014.07.028
    [18]
    Avitabile V, Baccini A, Friedl M A, et al. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda[J]. Remote Sensing of Environment, 2012, 117(1): 366−380.
    [19]
    Chi H, Sun G, Huang J, et al. Estimation of forest aboveground biomass in Changbai Mountain region using ICESat/GLAS and Landsat/TM data[J]. Remote Sensing, 2017, 9(7): 707−732. doi: 10.3390/rs9070707
    [20]
    宋丽楠. 帽儿山林场森林生物量估测及时空动态格局分析[D]. 哈尔滨: 东北林业大学, 2010.

    Song L N. Estimation of forest biomass and its temporal and spatial distribution patterns analysis in Maoershan Forest Farm[D]. Harbin: Northeast Forestry University, 2010.
    [21]
    李凤凤. 泗阳县杨树生物量遥感估算及其动态变化分析[D]. 南京: 南京林业大学, 2011.

    Li F F. Remote sensing estimation of Siyang County polar biomass and dynamic analysis[D]. Nanjing: Nanjing Forestry University, 2011.
    [22]
    Pflugmacher D, Cohen W B, Kennedy R E, et al. Using Landsat-derived disturbance and recovery history and Lidar to map forest biomass dynamics[J]. Remote Sensing of Environment, 2014, 151(8): 124−137.
    [23]
    Gómez C, White J C, Wulder M A, et al. Historical forest biomass dynamics modelled with Landsat spectral trajectories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 14−28. doi: 10.1016/j.isprsjprs.2014.03.008
    [24]
    Brandt J S, Kuemmerle T, Li H M, et al. Using Landsat imagery to map forest change in southwest China in response to the national logging ban and ecotourism development[J]. Remote Sensing of Environment, 2012, 121: 358−369. doi: 10.1016/j.rse.2012.02.010
    [25]
    胥辉, 岳彩荣.基于遥感技术的香格里拉县森林景观变化与森林生物量估测研究[M]. 昆明: 云南科技出版社, 2014: 1−10.

    Xu H, Yue C R. Study on forest landscape change and forest biomass estimation in Shangri-La based on remote sensing technology[M]. Kunming: Yunnan Science and Technology Press, 2014: 1−10.
    [26]
    张加龙, 胥辉, 岳彩荣, 等. 基于CA-Markov的香格里拉县森林景观格局变化及预测[J]. 东北林业大学学报, 2013, 41(6):46−49, 65. doi: 10.3969/j.issn.1000-5382.2013.06.012

    Zhang J L, Xu H, Yue C R. Change and prediction of forest landscape pattern in Shangri-La County based on CA-Markov[J]. Journal of Northwest Forestry University, 2013, 41(6): 46−49, 65. doi: 10.3969/j.issn.1000-5382.2013.06.012
    [27]
    Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 all sensors[J]. Remote Sensing of Environment, 2009, 113(5): 893−903. doi: 10.1016/j.rse.2009.01.007
    [28]
    Yan E, Lin H, Wang G, et al. Multi-resolution mapping and accuracy assessment of forest carbon density by combining image and plot data from a nested and clustering sampling design[J]. Remote Sensing, 2016, 8(7): 571−592. doi: 10.3390/rs8070571
    [29]
    Berk A, Bernstein L, Anderson G, et al. Modtran cloud and multiple scattering upgrades with application to aviris[J]. Remote Sensing of Environment, 1998, 65(3): 367−375. doi: 10.1016/S0034-4257(98)00045-5
    [30]
    Adlergolden S M, Berk A, Richtsmeier S C, et al. Status of atmospheric correction using a MODTRAN4-based algorithm[J]. Proceedings of SPIE-the International Society for Optical Engineering, 2000, 4049: 11−21.
    [31]
    Nichol J, Hang L K, Sing W M. Empirical correction of low sun angle images in steeply sloping terrain: a slope-matching technique[J]. International Journal of Remote Sensing, 2006, 27(3): 629−635. doi: 10.1080/02781070500293414
    [32]
    Zhang J L, Lu C, Xu H, et al. Estimating aboveground biomass of Pinus densata-dominated forests using Landsat time series and permanent sample plot data[J]. Journal of Forestry Research, 2019, 30(5): 1689−1706. doi: 10.1007/s11676-018-0713-7
    [33]
    Foody G M, Boyd D S, Cutler M E. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J]. Remote Sensing of Environment, 2003, 85(4): 463−474. doi: 10.1016/S0034-4257(03)00039-7
    [34]
    Huete A, Justice C, Liu H. Development of vegetation and soil indices for Modis-eos[J]. Remote Sensing of Environment, 1994, 49(3): 224−234. doi: 10.1016/0034-4257(94)90018-3
    [35]
    Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127−150. doi: 10.1016/0034-4257(79)90013-0
    [36]
    Clark M L, Roberts D A, Ewel J J, et al. Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors[J]. Remote Sensing of Environment, 2011, 115(11): 2931−2942. doi: 10.1016/j.rse.2010.08.029
    [37]
    Güneralp İ, Filippi A M, Randall J. Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling[J]. International Journal of Applied Earth Observations and Geoinformation, 2014, 33: 119−126. doi: 10.1016/j.jag.2014.05.004
    [38]
    Powell S L, Cohen W B, Yang Z, et al. Quantification of impervious surface in the snohomish water resources inventory area of western washington from 1972–2006[J]. Remote Sensing of Environment, 2008, 112(4): 1895−1908.
    [39]
    Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. Studies in Media and Communication, 1973, 3(6): 610−621.
    [40]
    Boegh E, Soegaard H, Broge N, et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture[J]. Remote Sensing of Environment, 2002, 81(2): 179−193.
    [41]
    孙雪莲. 基于Landsat8-OLI的香格里拉高山松林生物量遥感估测模型研究[D]. 昆明: 西南林业大学, 2016.

    Sun X L. Biomass estimation model of Pinus densata forests in Shangri-La City based on Landsat8-OLI by remote sensing[D]. Kunming: Southwest Forestry University, 2016.
    [42]
    Cnaan A, Laird N M, Slasor P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data[J]. Statistics in Medicine, 1997, 16(20): 2349−2380.
    [43]
    Bolker B M, Brooks M E, Clark C J, et al. Generalized linear mixed models: a practical guide for ecology and evolution[J]. Trends in Ecology & Evolution, 2009, 24(3): 127−135.
    [44]
    曾伟生, 唐守正, 夏忠胜, 等. 利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程[J]. 林业科学研究, 2011, 24(3):285−291.

    Zeng W S, Tang S Z, Xia Z S, et al. Using linear mixed model and dummy variable model approaches to construct generalized single: tree biomass equations in Guizhou[J]. Forest Research, 2011, 24(3): 285−291.
    [45]
    张加龙, 胥辉, 陆驰. 应用Landsat8 OLI和GBRT对高山松地上生物量的估测[J]. 东北林业大学学报, 2018, 46(8):25−30. doi: 10.3969/j.issn.1000-5382.2018.08.005

    Zhang J L, Xu H, Lu C. Estimation of the above ground biomass of Pinus densata based on Landsat 8 OLI and gradient boost regression tree[J]. Journal of Northwest Forestry University, 2018, 46(8): 25−30. doi: 10.3969/j.issn.1000-5382.2018.08.005
    [46]
    黄二辉, 潘德炉, 李淑菁, 等. 水下剖面光谱原始数据异常值的判断方法[J]. 海洋学研究, 2006, 24(1):91−96. doi: 10.3969/j.issn.1001-909X.2006.01.011

    Huang E H, Pan D L, Li S J, et al. Comparing methods for identifying the outliers in the in-water profile spectral data[J]. Journal of Marine Sciences, 2006, 24(1): 91−96. doi: 10.3969/j.issn.1001-909X.2006.01.011
    [47]
    Lu D S, Chen Q, Wang G X, et al. Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates [J/OL]. International Journal of Forestry Research, 2012, 16[2019−11−13]. https://www.hindawi.com/journals/ijfr/2012/436537/.
    [48]
    Lu D, Chen Q, Wang G X, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2014, 9(1): 63−105.
    [49]
    傅煜.区域尺度森林地上生物量的不确定性度量研究[D]. 北京: 中国林业科学研究院, 2015.

    Fu Y. Uncertainty assessment for regional-level forest above-ground biomass estimates[D]. Beijing: Chinese Academy of Forestry, 2015.
    [50]
    Antonova S, Thiel C, Höfle B, et al. Estimating tree height from TanDEM-X data at the northwestern Canadian treeline[J/OL]. Remote Sensing of Environment, 2019, 231:111251 [2019−12−15]. https://doi. org/10.1016/j. rse. 2019. 111251.
    [51]
    张巍巍, 冯仲科, 汪笑安, 等. 基于TM影像的林木参数提取和树高估测[J]. 中南林业科技大学学报, 2013, 33(9):27−31. doi: 10.3969/j.issn.1673-923X.2013.09.007

    Zhang W W, Feng Z K, Wang X A, et al. Trees parameter extraction and tree height estimation based on TM images[J]. Journal of Central South University of Forestry & Technology, 2013, 33(9): 27−31. doi: 10.3969/j.issn.1673-923X.2013.09.007
    [52]
    吴迪, 范文义. 激光雷达协同多角度光学遥感数据反演树高[J]. 北京林业大学学报, 2014, 36(4):8−15.

    Wu D, Fan W Y. Forest canopy height estimation using LiDAR and optical multi-angler data[J]. Journal of Beijing Forestry University, 2014, 36(4): 8−15.
  • Related Articles

    [1]Wang Rongfang, Zhang Ziyan, Li Dehai. Effects of extraction methods on extraction components and antioxidant activity of Quercus mongolica shell[J]. Journal of Beijing Forestry University, 2022, 44(5): 150-160. DOI: 10.12171/j.1000-1522.20210352
    [2]Deng Wenhong, Zhao Xinrui, Zhang Junqi, Guo Huihong. Determination of plant hormones in plant tissues by UPLC-MS/MS[J]. Journal of Beijing Forestry University, 2019, 41(8): 154-160. DOI: 10.13332/j.1000-1522.20190052
    [3]WANG Wu-hao, QI Qi, LI Yun, GAI Ying. Internal-standard quantitative determination of chlorogenic acid in Eucommia ulmoides plant by CE-MS[J]. Journal of Beijing Forestry University, 2017, 39(4): 115-119. DOI: 10.13332/j.1000-1522.20160030
    [4]LI Ran, QI Qi, LI Yun, CHEN Xue-mei, GAI Ying. A method of HPLC-MS/MS to determine chlorogenic acid and other three kinds of active components in Eucommia ulmoids[J]. Journal of Beijing Forestry University, 2016, 38(6): 123-129. DOI: 10.13332/j.1000-1522.20160105
    [5]LI Jin-ke, DENG Wen-hong, CHEN Shao-liang. Quantitative analysis of gibberellins in plant tissues by GPC-HPLC-LC/MS.[J]. Journal of Beijing Forestry University, 2014, 36(6): 171-178. DOI: 10.13332/j.cnki.jbfu.2014.06.027
    [6]YANG Li-bin, SONG Rui-qing, LI Chong-wei. Effects of ethyl acetate extract of Trichoderma harzianum fermentation liquid on physiological index of Phytophthora infestans[J]. Journal of Beijing Forestry University, 2013, 35(2): 92-96.
    [7]LI Jin-ke, CHEN Hua-jun, CHEN Shao-liang. Quantitative analysis of jasmonic acids, indole-3-acetic acid and abscisic acid in plant tissues by GC-MS[J]. Journal of Beijing Forestry University, 2010, 32(5): 143-148.
    [8]JI Hong-fang, ZHANG Ling-wen, SONG Rui-qing. Effects of Lactarius vellereus fermenting liquor extraction on the activity of several impo rtant enzymes in mycelia of Alternaria alternata[J]. Journal of Beijing Forestry University, 2009, 31(4): 51-54.
    [9]JI Hong-fang, ZHANG Ling-wen, SONG Rui-qing. Inhibiting mechanism of the extraction of Lactarius vellereus fermenting liquid on Alternaria alternata in poplar[J]. Journal of Beijing Forestry University, 2008, 30(4): 146-149.
    [10]JI Hong-fang, SONG Rui-qing, YANG Qian. Effects of extraction from Lactarius vellereus fermenting liquor on the activity of protective enzymes, content of MDA and conductivity ratio in Alternaria alternata(Fr.) Keissler[J]. Journal of Beijing Forestry University, 2007, 29(6): 156-160. DOI: 10.13332/j.1000-1522.2007.06.022
  • Cited by

    Periodical cited type(3)

    1. 王家强,郑锋振. 耐热嗜酸β-甘露聚糖酶TaMan5A在毕赤酵母中高效表达及酶学性质研究. 食品与发酵工业. 2024(03): 52-58 .
    2. 王旭洁,姚三川,雒翠梅,母军,漆楚生. 路易斯酸预处理对木材热降解特性的影响. 北京林业大学学报. 2024(11): 133-140 . 本站查看
    3. 蔡金澄,雒翠梅,王旭洁,母军. 高温热处理对挪威云杉及泡桐木振动性能和化学组分的影响. 林产工业. 2023(11): 14-20 .

    Other cited types(4)

Catalog

    Article views (1755) PDF downloads (100) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return