Citation: | Gao Jipeng, Qin Ling, Cao Qingqin, Fang Kefeng, Tian Yelin. Genetic structure of populations and introgression of three Quercus species in mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2020, 42(7): 58-67. DOI: 10.12171/j.1000-1522.20190402 |
[1] |
Anderson E, Hubricht L. Hybridization in Tradescantia (Ⅲ): the ecidence for introgressive for introgressive hybridization[J]. American Journal of Botany, 1938, 25(6): 396−402. doi: 10.1002/j.1537-2197.1938.tb09237.x
|
[2] |
Rieseberg L H, Wendel J F. Introgression and its consequences in plants [M]// Harrison R. Hybrid zones and the evolutionary process. Oxford: Oxford University Press, 1993: 70−103.
|
[3] |
Rushton B S. Natural hybridization within the genus Quercus L.[J]. Annales des Sciences Forestieres, 1993, 50 (Suppl.): 73−90.
|
[4] |
Arnold M L. Evolution through genetic exchange[M]. Oxford: Oxford University Press, 2006.
|
[5] |
Jiggins C D, Mallet J. Bimodal hybrid zones and speciation[J]. Trends in Ecology & Evolution, 2000, 15(6): 250−255.
|
[6] |
Hamrick J L. Plant population genetics, breeding and genetic resources[M]. Sunderland: Sinauer Associates, 1990.
|
[7] |
Kremer A, Petit R. Gene diversity in natural populations of oak species[J]. Annales des Sciences Forestières, 1993, 50: 186−202. doi: 10.1051/forest:19930717
|
[8] |
Quang N D, Ikeda S, Harada K. Nucleotide variation in Quercus crispula Blume[J]. Heredity, 2008, 101(2): 166−174. doi: 10.1038/hdy.2008.42
|
[9] |
Arnold M L, Ballerini E S, Brothers A N. Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana irises[J]. Heredity, 2012, 108(3): 159−166. doi: 10.1038/hdy.2011.65
|
[10] |
Eaton D A, Hipp A L, González-Rodríguez A, et al. Historical introgression among the American live oaks and the comparative nature of tests for introgression[J]. Evolution, 2015, 69(10): 2587−2601.
|
[11] |
Dow B D, Ashley M V. High levels of gene flow in bur oak revealed by paternity analysis using microsatellites[J]. Journal of Heredity, 1998, 89(1): 62−70. doi: 10.1093/jhered/89.1.62
|
[12] |
Muir G, Fleming C C, Schlotterer C, et al. Species status of hybridizing oaks[J]. Nature, 2000, 405: 1016. doi: 10.1038/35016640
|
[13] |
Steinhoff S. Results of species hybridization with Quercus robur L. and Quercus petraea (Matt) Liebl[J]. Annales des Sciences Forestieres, 1993, 50 (Suppl.): 137−143.
|
[14] |
Lefort E, Lally M, Thompson D. Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally Ireland[J]. Silvae Genetica, 1998, 473(176): 5−6.
|
[15] |
Lopez-Aljorna A, Angeles B M, Aguinagalde I, et al. Fingerprinting and genetic variability in cork oak (Quercus suber L.) elite trees using ISSR and SSR markers[J]. Annales of Sciences Forestieres, 2007, 64(7): 773−779.
|
[16] |
Moran E V, Willis J, Clark J S. Genetic evidence for hybridization in red oaks (Quercus Sect. Lobatae, Fagaceae)[J]. American Journal of Botany, 2012, 99(1): 92−100. doi: 10.3732/ajb.1100023
|
[17] |
Petit R J, Csaikl U M, Bordács S, et al. Chloroplast DNA variation in European white oaks[J]. Forest Ecology and Management, 2002, 156(1): 5−26.
|
[18] |
Antonecchia G, Fortini P, Lepais O, et al. Genetic structure of a natural oak community in central Italy: evidence of gene flow between three sympatric white oak species (Quercus, Fagaceae)[J]. Annals of Forest Research, 2015, 57(2): 205−216.
|
[19] |
Salvini D, Bruschi P, Fineschi S, et al. Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. within an Italian stand as revealed by microsatellite fingerprinting[J]. Plant Biology, 2009, 11(5): 758−765. doi: 10.1111/j.1438-8677.2008.00158.x
|
[20] |
Lepais O, Pettt R J, Guichoux E, et al. Species relative abundance and direction of introgression in oaks[J]. Molecular Ecology, 2009, 18(10): 2228−2242. doi: 10.1111/j.1365-294X.2009.04137.x
|
[21] |
厉月桥, 李迎超, 吴志庄. 中国北方栎属植物资源调查与区划[J]. 林业资源管理, 2013(4):88−93. doi: 10.3969/j.issn.1002-6622.2013.04.017
Li Y Q, Li Y C, Wu Z Z. Study on investigation and division of the resources of Quercus in northern China[J]. Forest Resources Management, 2013(4): 88−93. doi: 10.3969/j.issn.1002-6622.2013.04.017
|
[22] |
李文英, 顾万春, 周世良. 蒙古栎天然群体遗传多样性的AFLP分析[J]. 林业科学, 2003, 39(5):29−36. doi: 10.3321/j.issn:1001-7488.2003.05.005
Li W Y, Gu W C, Zhou S L. AFLP analysis on genetic diversity of Quercus mongolica populations[J]. Scientia Silvae Sinicae, 2003, 39(5): 29−36. doi: 10.3321/j.issn:1001-7488.2003.05.005
|
[23] |
徐小林, 徐立安, 黄敏仁, 等. 栓皮栎天然群体SSR遗传多样性研究[J]. 遗传, 2004, 26(5):683−688. doi: 10.3321/j.issn:0253-9772.2004.05.023
Xu X L, Xu L A, Huang M R, et al. Genetic diversity of microsatellites (SSRs) of natural populations of Quercus variabilis[J]. Hereditas (Beijing), 2004, 26(5): 683−688. doi: 10.3321/j.issn:0253-9772.2004.05.023
|
[24] |
魏高明. 苏皖4种同域分布栎树的遗传变异与基因渐渗[D]. 南京: 南京林业大学, 2015.
Wei G M. Genetic variation of populations and introgression among four sympatric oaks in Jiangsu and Anhui provinces[D]. Nanjing: Nanjing Forestry University, 2015.
|
[25] |
Zeng Y F, Liao W J, Petit R J, et al. Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation[J]. Molecular Ecology, 2011, 20(23): 4995−5011. doi: 10.1111/j.1365-294X.2011.05354.x
|
[26] |
Hubert F, Grimm G W, Jousselin E, et al. Multiple nuclear genes stableilize the phylogenetic backbone of the genus Quercus[J]. Systematics & Biodiversity, 2014, 12(4): 405−423.
|
[27] |
任宪威. 北京新植物[J]. 河北农业大学学报, 1996, 19(3):86−87.
Ren X W. New taxa from Beijing[J]. Journal of Agricultural University of Hebei, 1996, 19(3): 86−87.
|
[28] |
陈焕镛, 黄成就.中国植物志(22): 壳斗科[M]. 北京: 科学出版社, 1998: 213−263.
Chen H Y, Huang C J. Flora of China (22): Fagaceae [M]. Beijing: Science Press, 1998: 213−263.
|
[29] |
Kampfer S, Lexer C, Steinkellner H, et al. Characterization of (GA)n microsatellite loci from Quercus robur[J]. Hereditas, 1998, 129: 183−186.
|
[30] |
Aldrich P R, Michler C H, Sun W L, et al. Microsatellite markers for northern red oak (Fagaceae: Quercus rubra)[J]. Molecular Ecology Notes, 2002, 2: 472−474. doi: 10.1046/j.1471-8286.2002.00282.x
|
[31] |
Steinkellner H, Fluch S, Turetschek E, et al. Identification and characterization of (GA / CT)n-microsatellite loci from Quercus petraea[J]. Plant Molecular Biology, 1997, 33: 1093−1096. doi: 10.1023/A:1005736722794
|
[32] |
王越. 基于SSR标记的槲树、蒙古-辽东栎种间杂交研究[D]. 济南: 山东大学, 2012.
Wang Y. Natural hybridization between Quercus dentata and Q. mongolica-liaotungensis revealed by microsatellite markers[D]. Jinan: Shandong University, 2012.
|
[33] |
Marshall T C, Slate J, Kruuk L E B, et al. Statistical confidence for likelihood-based paternity inference in natural populations[J]. Molecular Ecology, 1998, 7(5): 639−655. doi: 10.1046/j.1365-294x.1998.00374.x
|
[34] |
Peakall R, Smouse P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(19): 2537−2539. doi: 10.1093/bioinformatics/bts460
|
[35] |
范英明, 张登荣, 于大德, 等. 河北省华北落叶松天然群体遗传多样性分析[J]. 植物遗传资源学报, 2014, 15(3):465−471.
Fan Y M, Zhang D R, Yu D D, et al. Genetic diversity and population structure of Larix principis-rupprechtii Mayr in Hebei Province[J]. Journal of Plant Genetic Resources, 2014, 15(3): 465−471.
|
[36] |
张如华. 柽柳群体遗传变异研究[D]. 南京: 南京林业大学, 2011.
Zhang R H. Study on the gentic variation of Tamarix chinensis Lour. populations [D]. Nanjing: Nanjing Forestry University, 2011.
|
[37] |
张学江. 中国卧龙自然保护区不同海拔川滇高山栎(Quercus aquifolioides)群体的遗传变异[D]. 成都: 中国科学院成都生物研究所2006.
Zhang X J. Genetic variation of Quercus aquifolioides populations at varying altitudes in the Wolong Nature Reserve of China[D]. Chengdu: Chengdu Institute of Biology, 2006.
|
[38] |
Hardy O J. Fine-scale genetic structure and gene dispersal in Centaurea corymbosa (Asteraceae) (Ⅱ): correlated paternity within and among sibships[J]. Genetics, 2004, 168(3): 1601−1614. doi: 10.1534/genetics.104.027714
|
[39] |
Craft K J, Ashley M V. Landscape genetic structure of bur oak (Quercus macrocarpa) savannas in Illinois[J]. Forest Ecology and Management, 2007, 239(1): 13−20.
|
[40] |
邸晓瑶. 基于cpDNA和SSR标记的槲栎群体遗传学研究[D]. 西安: 西北大学, 2017.
Di X Y. Population genetics of Quercus aliena based on cpDNA and SSR marker[D]. Xi’an: Northwest University, 2017.
|
[41] |
Chybicki I J, Burczyk J. Seeing the forest through the trees: comprehensive inference on individual mating patterns in a mixed stand of Quercus robur and Q. petraea[J]. Annals of Botany, 2013, 112(3): 561−574. doi: 10.1093/aob/mct131
|
[42] |
徐刚标.植物群体遗传学[M]. 北京: 科学出版社, 2009: 55−65.
Xu G B. Plant population genetics[M]. Beijing: Science Press, 2009: 55−65.
|
[43] |
Liu Y, Li Y, Song J, et al. Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae)[J/OL]. Annals of Forest Science, 2018, 75(4)[2019−08−21]. http://link.springer.com/article/10.1007/s13595-018-0770-2.
|
[44] |
解新明, 云锦凤. 植物遗传多样性及其检测方法[J]. 中国草地, 2000, 22(6):52−60.
Xie X M, Yun J F. Genetic diversity and detective methods of plant[J]. Chinese Journal of Grassland, 2000, 22(6): 52−60.
|
[45] |
鲜冬娅. 北京上方山植物多样性及保护研究[D]. 北京: 北京林业大学, 2008.
Xian D Y. Study on plant diversity and conservation in Shangfang Mountain, Beijing[D]. Beijing: Beijing Forestry University, 2008.
|
[46] |
Aldrich P R, Lavender-Bares J. Wild crop relatives: genomic and breeding resources[M]. Berlin: Springer Berlin Heidelberg, 2011.
|
[47] |
Burgarella C, Lorenzo Z, Jabbour-Zahab R, et al. Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex)[J]. Heredity, 2009, 102(5): 442−452. doi: 10.1038/hdy.2009.8
|
[48] |
Curtu A L, Gailing O, Finkeldey R. Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community [J/OL]. BMC Evolutionary Biology, 2007, 7(1): 218 [2019−08−21].http://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-7-218.
|
[49] |
Lyu J, Song J, Liu Y, et al. Species boundaries between three sympatric oak species: Quercus aliena, Q. dentata, and Q. variabilis at the northern edge of their distribution in China[J/OL]. Frontiers in Plant Science, 2018, 9: 414[2019−06−14]. http://www.frontiersin.org/articles/10.3389/fpls.2018.00414/full.
|
1. |
何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
![]() | |
2. |
田刘翔宇,张立世,姚纪元,王利民. 基于MaxEnt探究栖息地质量对百灵科鸟类分布影响. 东北师大学报(自然科学版). 2024(02): 106-116 .
![]() | |
3. |
章蜜,罗伟. 庐山保护区白颈长尾雉生境适宜性评价研究. 湖北林业科技. 2024(05): 44-48 .
![]() | |
4. |
王佩,李英杰,袁家根,耿盼,李蕊. 基于优化MaxEnt模型的原麝生境适宜性评价. 野生动物学报. 2023(01): 38-45 .
![]() | |
5. |
富爱华,郜二虎,布日古德,陈敏豪,提杨,栾晓峰. 我国白琵鹭(Platalea leucorodia)越冬地预测与保护现状分析. 生态与农村环境学报. 2022(01): 69-75 .
![]() | |
6. |
吴艳,王洪峰,穆立蔷. 物种分布模型的研究进展与展望. 高师理科学刊. 2022(05): 66-70 .
![]() | |
7. |
李鑫泽,冯佳楠,支晓亮,钟林强,刘鑫鑫,张明海. 东北地区三种鹿科动物潜在栖息地预测与保护空缺分析. 野生动物学报. 2021(02): 318-328 .
![]() | |
8. |
王艳君,高泰,石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报. 2021(09): 59-69 .
![]() | |
9. |
张丽霞,孙冬婷,胡昕,朱向博,张敬,晁青鲜,卫泽珍,张成林. 中国圈养褐马鸡种群和饲养管理现状调查. 野生动物学报. 2021(04): 1123-1130 .
![]() | |
10. |
李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响. 林业科学. 2021(10): 102-110 .
![]() | |
11. |
刘博,王晔楠,唐超,刘丽,马光昌,彭正强,阎伟. 云斑斜线天蛾在我国的适生性及限制性环境因子分析. 热带作物学报. 2021(12): 3581-3587 .
![]() | |
12. |
李敏,李秀明,徐家慧,薛琳,武爱明,盘凯筠,闵晓明,李玉太,钱法文. 基于MaxEnt模型预测白琵鹭在中国东北地区的适宜分布区. 生态学杂志. 2020(08): 2691-2703 .
![]() | |
13. |
张丽霞,王志永. 褐马鸡栖息地保护研究. 特种经济动植物. 2020(12): 3-5 .
![]() | |
14. |
唐书培,穆丽光,王晓玲,张静,刘波,孟和达来,鲍伟东. 基于MaxEnt模型的赛罕乌拉国家级自然保护区斑羚生境适宜性评价. 北京林业大学学报. 2019(01): 102-108 .
![]() | |
15. |
吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 .
![]() | |
16. |
白雪红,王文杰,蒋卫国,师华定,陈坤,陈民. 气候变化背景下京津冀地区濒危水鸟潜在适宜区模拟及保护空缺分析. 环境科学研究. 2019(06): 1001-1011 .
![]() | |
17. |
刘博,覃伟权,阎伟. 基于MaxEnt模型的小巢粉虱在中国的潜在地理分布. 环境昆虫学报. 2019(06): 1276-1286 .
![]() | |
18. |
王浩,杨德宏,满亚洲. 基于GIS技术的动物物种管理及保护. 软件. 2018(12): 111-115 .
![]() | |
19. |
侯海英. 山西褐马鸡种群分布及特性研究. 山西林业科技. 2018(04): 11-13+72 .
![]() |