• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ao Jiakun, Niu Jianzhi, Xie Baoyuan, Luo Ziteng, Lin Xingna, Yang Lan. Influence of soil macropore structure on saturated hydraulic conductivity[J]. Journal of Beijing Forestry University, 2021, 43(2): 102-112. DOI: 10.12171/j.1000-1522.20190429
Citation: Ao Jiakun, Niu Jianzhi, Xie Baoyuan, Luo Ziteng, Lin Xingna, Yang Lan. Influence of soil macropore structure on saturated hydraulic conductivity[J]. Journal of Beijing Forestry University, 2021, 43(2): 102-112. DOI: 10.12171/j.1000-1522.20190429

Influence of soil macropore structure on saturated hydraulic conductivity

More Information
  • Received Date: November 11, 2019
  • Revised Date: June 05, 2020
  • Available Online: January 08, 2021
  • Published Date: February 23, 2021
  •   Objective  This paper aims to explore the influence of structure and quantity of macropores with different diameter classes on the saturated hydraulic conductivity of soil, and to provide a theoretical reference for the study of soil water solute transport law, soil erosion control and soil pollution control in this area.
      Method  The study was carried out on water conservation forest in Wuzuoshan Forest Farm of Miyun Reservoir in Beijing suburb. Based on the industrial CT scanning technology, the three-dimensional spatial structure of soil macropores in the soil column was reconstructed to explore the influence of structural parameter density and quantity density of macropores with different diameter classes on the soil saturated hydraulic conductivity.
      Result  (1) Excepting for equivalent diameter large than 4.30 mm, the larger the equivalent diameter of macropores was, the smaller the quantity density and structural parameter density of macropores were. (2) In three soil layers of six sample plots, the proportion of macropores with an equivalent diameter of 0.31−2.30 mm to all macropores was higher than 95%. (3) The maximum saturated hydraulic conductivity of sample plot 1, 2, 5 and 6 was in 0−10 cm soil layer, and it decreased with the increase of soil depth, but except for sample plot 6. The saturated hydraulic conductivity of sample plot 4 increased with the soil depth increasing. (4) Except for the volume density of macropores with an equivalent diameter greater than 4.30 mm, all the other eigenvalue densities of macropores had a significantly positive correlation with the saturated hydraulic conductivity.
      Conclusion  (1) In the 0−30 cm soil layer, the saturated hydraulic conductivity of most sample plots decreases with the soil depth increasing, but it possibly increases with the soil depth increasing. (2) The equivalent diameter of macropores in the soil of forest is mainly concentrated in 0.31−2.30 mm, and its occupancy rate is more than 95%. (3) When equivalent diameter of macropores is smaller, the density of characteristic parameter of macropore structure is greater except for the volume and surface area of macropores. (4) There is a significantly positive correlation between the characteristic parameter of macropores and the saturated hydraulic conductivity except for the volume density of macropores with equivalent diameter greater than 4.30 mm. The influence of macropore number on saturated hydraulic conductivity is significantly greater than structure parameters of macropores.
  • [1]
    牛健植, 余新晓, 张志强. 优先流研究现状及发展趋势[J]. 生态学报, 2006, 26(1):233−245.

    Niu J Z, Yu X X, Zhang Z Q. The present and future research on preferential flow[J]. Acta Ecologica Sinica, 2006, 26(1): 233−245.
    [2]
    Baratelli F, Cattaneo L, Giudici M, et al. Solute transport in geological porous media: estimation of dispersion coefficients[J]. Procedia-Social and Behavioral Sciences, 2010, 2(6): 7605−7606.
    [3]
    Allaire S E, van Bochove E, Denault J, et al. Preferential pathways of phosphorus movement from agricultural land to water bodies in the Canadian Great Lakes Basin: a predictive tool[J]. Canadian Journal of Soil Science, 2017, 91(3): 361−374.
    [4]
    Dusek J, Vogel T. Modeling subsurface hillslope runoff dominated by preferential flow: one- vs. two-dimensional approximation[J]. Vadose Zone Journal, 2014, 13(6): 859−879.
    [5]
    Gao Z X, Xu X X, Yu M Z, et al. Impact of land use types on soil macropores in the loess region[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1578−1584.
    [6]
    李伟莉. 长白山森林土壤大孔隙分布及其对水分运动的影响[D]. 沈阳: 中国科学院沈阳应用生态研究所, 2007.

    Li W L. Distribution of macropores in forest soil of Changbai Mountain and its influence on water movement[D]. Shenyang: Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, 2007.
    [7]
    Hao Z C, Feng J. Recent advances in water and solute movement in macro-porous soil[J]. Journal of Irrigation and Drainage, 2002, 21(1): 67−71.
    [8]
    Annemieke I G, Jirka S, Jarvis N, et al. Two-dimensional modelling of preferential water flow and pesticide transport from a tile-drained field[J]. Journal of Hydrology, 2006, 329: 647−660.
    [9]
    Beven K, Germann P. Macropores and water flow in soils[J]. Water Resources Research, 1982, 18(5): 1311−1325.
    [10]
    Lamande M, Labouriau R, Holmstrup M, et al. Density of macropores as related to soil and earthworm community parameters in cultivated grasslands[J]. Geoderma, 2011, 162: 319−326.
    [11]
    Luo L, Lin H, Halleck P. Quantifying soil structure and preferential flow in intact soil using X-ray computed tomography[J]. Soil Science Society of America Journal, 2008, 72(4): 1058−1069.
    [12]
    Singh P, Kanwar R S, Thompson M L. Measurement and characterization of macropores by using AUTOCAD and automatic image analysis[J]. Journal of Environmental Quality, 1991, 20(1): 289−294.
    [13]
    Warner G S, Nieber J L, Moore I D, et al. Characterizing macropores in soil by computed tomography[J]. Soil Science Society of America Journal, 1989, 53(3): 653−660.
    [14]
    石辉, 陈凤琴, 刘世荣. 岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J]. 生态学报, 2005, 25(3):507−512. doi: 10.3321/j.issn:1000-0933.2005.03.018.

    Shi H, Chen F Q, Liu S R. Macropores properties of forest soil and its influence on water effluent in the upper reaches of Minjiang River[J]. Acta Ecologica Sinica, 2005, 25(3): 507−512. doi: 10.3321/j.issn:1000-0933.2005.03.018.
    [15]
    吴华山, 陈效民, 陈集. 利用 CT 扫描技术对太湖地区主要水稻土中大孔隙的研究[J]. 水土保持学报, 2007, 21(2):175−178. doi: 10.3321/j.issn:1009-2242.2007.02.044.

    Wu H S, Chen X M, Chen J. Study on macropore in main paddy soils in Tai-Lake region with CT[J]. Journal of Soil and Water Conservation, 2007, 21(2): 175−178. doi: 10.3321/j.issn:1009-2242.2007.02.044.
    [16]
    Hu X, Li Z C, Li X Y, et al. Quantification of soil macropores under alpine vegetation using computed tomography in the Qinghai Lake Watershed, NE Qinghai-Tibet Plateau[J]. Geoderma, 2016, 264: 244−251.
    [17]
    Saravanathiiban D S, Kutay M E, Khire M V. Effect of macropore tortuosity and morphology on preferential flow through saturated soil: a Lattice Boltzmann study[J]. Computers & Geotechnics, 2014, 59(6): 44−53.
    [18]
    董辉, 罗潇, 李智飞. 堆积碎石土细观孔隙空间特征对其渗透特性的定量影响[J]. 中南大学学报(自然科学版), 2017(48):1367−1375.

    Dong H, Luo X, Li Z F. Quantitative influence of meso-porosity space features of aggregate gravel soil on its permeability characteristics[J]. Journal of Central South University (Science and Technology), 2017(48): 1367−1375.
    [19]
    Meng C, Niu J, Yin Z, et al. Characteristics of rock fragments in different forest stony soil and its relationship with macropore characteristics in mountain area, northern China[J]. Journal of Mountain Science, 2018, 15(3):519−531.
    [20]
    李成茂. 密云水库集水区可持续发展评价及其调控对策研究[D]. 北京: 北京林业大学, 2003.

    Li C M. Studies on sustainable development and discussion on its countermeasures in Miyun Reservoir Watershed[D]. Beijing: Beijing Forestry University, 2003.
    [21]
    肖洋. 北京山区森林植被对非点源污染的生态调控机理研究[D]. 北京: 北京林业大学, 2008.

    Xiao Y. Ecological regulation mechanism of forest vegetation on non-point source pollution in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2008.
    [22]
    Nachtergaele F, Velthuizen H V, Verelst L, et al. The harmonized world soil database[Z]. 2010.
    [23]
    Hu X, Li Z C, Li X Y, et al. Influence of shrub encroachment on CT-measured soil macropore characteristics in the Inner Mongolia Grassland of northern China[J]. Soil and Tillage Research, 2015, 150: 1−9.
    [24]
    阮芯竹, 程金花, 张洪江, 等. 重庆市四面山不同土地利用类型饱和导水率[J]. 水土保持通报, 2015, 35(1):79−84.

    Ruan X Z, Cheng J H, Zhang H J, et al. Saturated hydraulic conductivity of different land use types in Simian Mountain of Chongqing City[J]. Bulletin of Soil and Water Conservation, 2015, 35(1): 79−84.
    [25]
    田香姣, 程金花, 杜士才, 等. 重庆四面山草地土壤大孔隙的数量和形态特征研究[J]. 水土保持学报, 2014, 28(2):295−299.

    Tian X J, Cheng J H, Du S C, et al. Study on number and morphological characteristics of soil macropores in grassland in Simian Mountain of Chongqing[J]. Journal of Soil and Water Conservation, 2014, 28(2): 295−299.
    [26]
    曾强, 徐则民, 官琦, 等. 不同植被条件下斜坡土体大孔隙特征分析[J]. 岩石力学与工程学报, 2016, 35(增刊 1):3343−3352.

    Zeng Q, Xu Z M, Guan Q, et al. Analysis of macropore characteristics of slope soil under different vegetation conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Suppl. 1): 3343−3352.
    [27]
    王伟, 张洪江, 程金花, 等. 四面山阔叶林土壤大孔隙特征与优先流的关系[J]. 应用生态学报, 2010, 21(5):1217−1223.

    Wang W, Zhang H J, Cheng J H, et al. Macropore characteristics and its relationships with the preferential flow in broadleaved forest soils of Simian Mountains[J]. Chinese Journal of Applied Ecology, 2010, 21(5): 1217−1223.
    [28]
    阙云, 邓翔宇, 陈嘉. 短时冻区冰雪消融对残积土坡非平衡渗流与稳定性作用机理分析[J]. 工程科学与技术, 2017, 49(6):73−83.

    Que Y, Deng X Y, Chen J. Mechanism analysis of non-equilibrium seepage and stability of residual soil slope caused by ice and snow melting in short-term frozen area[J]. Advanced Engineering Sciences, 2017, 49(6): 73−83.
    [29]
    冯杰, 郝振纯. CT扫描确定土壤大孔隙分布[J]. 水科学进展, 2002, 13(5):611−617. doi: 10.3321/j.issn:1001-6791.2002.05.014.

    Feng J, Hao Z C. Distribution of soil macropores characterized by CT[J]. Advances in Water Science, 2002, 13(5): 611−617. doi: 10.3321/j.issn:1001-6791.2002.05.014.
    [30]
    陆斌, 张胜利, 李侃, 等. 秦岭火地塘林区土壤大孔隙分布特征及对导水性能的影响[J]. 生态学报, 2012, 34(6):1512−1519.

    Lu B, Zhang S L, Li K, et al. Distribution of soil macropores and their influence on saturated hydraulic conductivity in the Huoditang forest region of the Qinling Mountains[J]. Acta Ecologica Sinica, 2012, 34(6): 1512−1519.
    [31]
    Hendriks C M A, Bianchi F. Root density and root biomass in pure and mixed forest stands of Douglas-fir and beech[J]. Netherlands Journal of Agricultural Science, 1995, 43(3): 321−331.
    [32]
    Luo L, Lin H, Li S. Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography[J]. Journal of Hydrology, 2010, 393(1−2): 53−64.
    [33]
    孟晨, 牛健植, 于海龙, 等. 土壤大孔隙三维特征影响因素和测定方法研究进展[J]. 北京林业大学学报, 2020, 42(11):1−8.

    Meng C, Niu J Z, Yu H L, et al. Research progress in influencing factors and measuring methods of 3-D characteristics of soil macropores[J]. Journal of Beijing Forestry University, 2020, 42(11): 1−8.
  • Cited by

    Periodical cited type(17)

    1. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    2. 李慧璇,马红亮,尹云锋,高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征. 植物生态学报. 2023(05): 618-628 .
    3. 罗国娜,车震宇. 马尾松凋落物对土壤氮循环与微生物的影响. 山东农业大学学报(自然科学版). 2023(04): 553-561 .
    4. 韦昌林,李毅,单立山,解婷婷,张鹏. 降水变化对典型荒漠植物凋落物分解的影响. 草地学报. 2022(05): 1280-1289 .
    5. Hao Qu,XueYong Zhao,XiaoAn Zuo,ShaoKun Wang,XuJun Ma,Xia Tang,XinYuan Wang,Eduardo Medina-Roldán. Litter decomposition in fragile ecosystems: A review. Sciences in Cold and Arid Regions. 2022(03): 151-161 .
    6. 王文秀,栾军伟,王一,杨怀,赵阳,李丝雨,梁昌强,孔祥河,刘世荣. 模拟干旱和磷添加对热带低地雨林叶凋落物分解的影响. 生态学报. 2022(15): 6160-6174 .
    7. 李慧业,林永慧,何兴兵. 4种内源真菌对马尾松凋落叶分解的影响. 西南农业学报. 2021(03): 618-625 .
    8. 王光燚,上官周平,方燕. 氮沉降对细根分解影响的研究进展. 水土保持研究. 2020(02): 383-391 .
    9. 舒韦维,陈琳,刘世荣,曾冀,李华,郑路,陈文军. 减雨对南亚热带马尾松人工林凋落物分解的影响. 生态学报. 2020(13): 4538-4545 .
    10. 叶贺,红梅,赵巴音那木拉,李静,闫瑾,张宇晨,梁志伟. 水氮控制对短花针茅荒漠草原根系分解的影响. 应用与环境生物学报. 2020(05): 1169-1175 .
    11. 杨晶晶,周正立,吕瑞恒,梁继业,王雄. 干旱生境下3种植物叶凋落物分解动态特征. 干旱区研究. 2019(04): 916-923 .
    12. 周书玉,袁川,王景燕,龚伟,唐海龙. 菌剂和外源氮素添加对青花椒采收剩余物分解的影响. 四川农业大学学报. 2019(06): 799-806 .
    13. 王欣,郭延朋,赵辉,孟凡军,刘国萍. 华北落叶松与白桦叶凋落物混合分解及其养分动态. 林业与生态科学. 2018(01): 29-36 .
    14. 郑欣颖,佘汉基,薛立,蔡金桓. 外源性氮和磷添加对马尾松凋落叶分解及土壤特性的影响. 生态环境学报. 2017(10): 1710-1718 .
    15. 佘汉基,蔡金桓,薛立,郑欣颖. 模拟外源性氮磷对尾叶桉和马占相思混合凋落叶分解的影响. 西北林学院学报. 2017(06): 45-52 .
    16. 蔡金桓,郑欣颖,薛立,佘汉基. 外源性氮和磷对杉木和藜蒴锥混合凋落叶分解的影响. 西南林业大学学报(自然科学). 2017(04): 103-112 .
    17. 蔡金桓,王卓敏,薛立,郑欣颖,佘汉基. 外源性氮和磷对藜蒴林凋落叶分解的影响. 中南林业科技大学学报. 2017(07): 105-111 .

    Other cited types(16)

Catalog

    Article views (1849) PDF downloads (87) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return