Citation: | Meng Jinghui. A comparison of different methods for fitting the self-thinning equation[J]. Journal of Beijing Forestry University, 2019, 41(12): 58-68. DOI: 10.12171/j.1000-1522.20190434 |
[1] |
Cubbage F, Harou P, Sills E. Policy instruments to enhance multi-functional forest management[J]. Forest Policy and Economics, 2007, 9(7): 833−851. doi: 10.1016/j.forpol.2006.03.010
|
[2] |
Meng J H, Lu Y C, Zeng J. Transformation of a degraded Pinus massoniana plantation into a mixed-species irregular forest: impacts on stand structure and growth in southern China[J]. Forests, 2014, 5(12): 3199−3221. doi: 10.3390/f5123199
|
[3] |
Kanninen M. Plantation forests: Global perspectives//Ecosystem goods and services from plantation forests[M]. Bauhus J, van der Meer P, Kanninen M, Eds. London: Earthscan Press, 2010: 1–15.
|
[4] |
国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 2009.
National Forestry and Grassland Administration (NFGA). China forest resources report (2014–2018)[M]. Beijing: China Forestry Publishing House, 2019.
|
[5] |
徐济德. 我国第八次森林资源清查结果及分析[J]. 林业经济, 2014(3):6−8.
Xu J D. The 8th forest resources inventory results and analysis in China[J]. Forestry Economics, 2014(3): 6−8.
|
[6] |
彭舜磊, 王得祥, 赵辉, 等. 我国人工林现状与近自然经营途径探讨[J]. 西北林学院学报, 2008, 23(2):184−188.
Peng S L, Wang D X, Zhao H, et al. Discussing the status quality of plantation and near nature forestry management in China[J]. Journal Northwest Forestry University, 2008, 23(2): 184−188.
|
[7] |
陆元昌, 张守攻, 雷相东, 等. 人工林近自然化改造的理论基础和实施技术[J]. 世界林业研究, 2009, 22(1):20−27.
Lu Y C, Zhang S G, Lei X D, et al. Theoretical basis and implementation techniques on close-to-nature transformation of plantations[J]. World Forestry Research, 2009, 22(1): 20−27.
|
[8] |
Drew T J, Flewelling J W. Stand density management: an alternative approach and its application to Douglas-Fir plantations[J]. Forest Science, 1979, 25(3): 518−532.
|
[9] |
Bormann B T, Gordon J C. Stand density effects in young red alder plantations: productivity, photosynthate partitioning, and nitrogen fixation[J]. Ecology, 1984, 65(2): 394−402. doi: 10.2307/1941402
|
[10] |
Castano S J, Barrio A M, Alvarez A P. Regional-scale stand density management diagrams for Pyrenean oak (Quercus pyrenaica Willd.) stands in north-west Spain[J]. Iforest, 2013, 6(2): 113−122.
|
[11] |
Hibbs D E. The self-thinning rule and red alder management[J]. Forest Ecology and Management, 1987, 18(4): 273−281. doi: 10.1016/0378-1127(87)90131-9
|
[12] |
Long J N. A practical approach to density management[J]. The Forestry Chronicle, 1985, 61(1): 23−27. doi: 10.5558/tfc61023-1
|
[13] |
Newton P. Evaluating the ecological integrity of structural stand density management models developed for boreal conifers[J]. Forests, 2015, 6(4): 992−1030.
|
[14] |
Mohler C L, Sprugel D G. Stand structure and allometry of trees during self-thinning of pure stands[J]. Journal of Ecology, 1978, 66(2): 599−614. doi: 10.2307/2259153
|
[15] |
Enquist B J, Brown J H, West G B. Allometric scaling of plant energetics and population density[J]. Nature, 1998, 395: 163−165. doi: 10.1038/25977
|
[16] |
Xue L, Ogawa K, Hagihara, et al. Self-thinning exponents based on the allometric model in Chinese pine (Pinus tabulaeformis Carr.) and Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr) stands[J]. Forest Ecology and Management, 1999, 117(1): 87−93.
|
[17] |
Pretzsch H. A unified law of spatial allometry for woody and herbaceous plants[J]. Plant Biology, 2002, 4(2): 159−166. doi: 10.1055/s-2002-25732
|
[18] |
Inoue A, Miyake M, Nishizono T. Allometric model of the Reineke equation for Japanese cypress (Chamaecyparis obtusa) and red pine (Pinus densiflora) stands[J]. Journal of Forest Research, 2004, 9(4): 319−324. doi: 10.1007/s10310-004-0084-0
|
[19] |
Reineke L H. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 46(7): 627−638.
|
[20] |
Yoda K, Kira T, Ogawa H, et al. Self-thinning in overcrowded pure stands under cultivated and natural conditions[J]. Journal of Biology, 1963, 14: 107−129.
|
[21] |
Westoby M. The self-thinning rule[J]. Advances in Ecological Research, 1984, 14(2): 167−225.
|
[22] |
Zhang L, Bi H, Gove J H, et al. A comparison of alternative methods for estimating the self-thinning boundary line[J]. Canadian Journal of Forest Research, 2005, 35(6): 1507−1514. doi: 10.1139/x05-070
|
[23] |
Vospernik S, Sterba H. Do competition-density rule and self-thinning rule agree?[J]. Annals of Forest Science, 2005, 72(3): 379−390.
|
[24] |
White J, Happer J L. Correlated changes in plant size and number in plant populations[J]. Journal of Ecology, 1970, 58(2): 467−485. doi: 10.2307/2258284
|
[25] |
Gorham E. Shoot height, weight and standing crop in relation to density of monospecific plant stands[J]. Nature, 1979, 279: 148−150. doi: 10.1038/279148a0
|
[26] |
White J. Demographic factors in populations of plants//Demography and evolution in plant populations[M]. Solbrig O T, Ed. Oxford: Blackwell Publishing, 1980: 21–48.
|
[27] |
Jack S B, Long J N. Linkages between silviculture and ecology: an analysis of density management diagrams[J]. Forest Ecology and Management, 1996, 86(1–3): 205−220.
|
[28] |
Luis J F S, Fonseca T F. The allometric model in the stand density management of Pinus pinaster Ait. in Portugal[J]. Annals of Forest Science, 2004, 61(8): 807−814. doi: 10.1051/forest:2004077
|
[29] |
Lonsdale W M, Watkinson A R. Tiller dynamics and self-thinning in grassland habitats[J]. Oecologia, 1983, 60(3): 390−395. doi: 10.1007/BF00376857
|
[30] |
Dunhan J B, Vinyard G L. Relationships between body mass, population density, and the self-thinning rule in stream-living salmonids[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(5): 1025−1030. doi: 10.1139/f97-012
|
[31] |
Pretzsch H. Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.): evidence from long-term experimental plots[J]. European Journal of Forest Research, 2005, 124(3): 193−205. doi: 10.1007/s10342-005-0068-4
|
[32] |
Solomon D S, Zhang L. Maximum size–density relationships for mixed softwoods in the northeastern USA[J]. Forest Ecology and Management, 2002, 155(1–3): 163−170.
|
[33] |
Zeide B. Tolerance and self-tolerance of trees[J]. Forest Ecology and Management, 1985, 13(3–4): 149−166.
|
[34] |
Weller D E. Will the real self-thinning rule please stand up? A reply to Osawa and Sugita[J]. Ecology, 1990, 71: 1204−1207. doi: 10.2307/1937389
|
[35] |
Puettmann K J, Hann D W, Hibbs D E. Evaluation of the size-density relationships for pure red alder and Douglas-fir stands[J]. Forest Science, 1993, 39(1): 7−27.
|
[36] |
Morris E C. Self-thinning lines differ with fertility level[J]. Ecological Research, 2002, 17(1): 17−28. doi: 10.1046/j.1440-1703.2002.00459.x
|
[37] |
Pretzsch H. Species-specific allometric scaling under self-thinning: evidence from long-term plots in forest stands[J]. Oecologia, 2006, 146(6): 572−583.
|
[38] |
Ge F, Zeng W, Ma W, et al. Does the slope of the self-thinning line remain a constant value across different site qualities? An implication for plantation density management[J/OL]. Forests, 2017, 8(10): f8100355 [2019−09−11]. http://www.doc88.com/p-1476329079105.html.
|
[39] |
West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology[J]. Science, 1997, 276: 122−126. doi: 10.1126/science.276.5309.122
|
[40] |
Enquist B J, West G B, Charnov E L, et al. Allometric scaling of production and life history variation in vascular plants[J]. Nature, 1997, 65(9): 3529−3538.
|
[41] |
West G B, Brown J H, Enquist B J. A general model for the structure and allometry of plant vascular systems[J]. Nature, 1999, 400: 664−667. doi: 10.1038/23251
|
[42] |
Brown J H, West G B, Enquist B J. Yes, West, Brown and Enquist’s model of allometric scaling is both mathematically correct and biologically relevant[J]. Functional Ecology, 2005, 19(4): 735−738. doi: 10.1111/j.1365-2435.2005.01022.x
|
[43] |
Deng J M, Wang G X, Morris E C, et al. Plant mass-density relationship along a moisture gradient in north-west China[J]. Journal of Ecology, 2006, 94(5): 953−958. doi: 10.1111/j.1365-2745.2006.01141.x
|
[44] |
Franco M, Kelly C K. The interspecific mass–density relationship and plant geometry[J]. Proceedings of the National Academy of Sciences, 1998, 95(13): 7830−7835. doi: 10.1073/pnas.95.13.7830
|
[45] |
Belgrano A, Allen A P, Enquist B J, et al. Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants[J]. Ecology Letters, 2002, 5(5): 611−613. doi: 10.1046/j.1461-0248.2002.00364.x
|
[46] |
Zeide B. Analysis of the 3/2 power law of self-thinning[J]. Forest Science, 1987, 33(2): 517−537.
|
[47] |
Cao W V, Dean T J, Vcjr B. Modeling the size-density relationship in direct seeded slash pine stands[J]. Forest Science, 2000, 46(3): 317−321.
|
[48] |
Lonsdale W. The self-thinning rule: dead or alive?[J]. Ecology, 1990, 71(4): 1373−1388. doi: 10.2307/1938275
|
[49] |
Hamilton N S, Matthew C, Lemaire G. In defence of the −3/2 boundary rule: a reevaluation of self-thinning concepts and status[J]. Annals of Botany, 1995, 76(6): 569−577. doi: 10.1006/anbo.1995.1134
|
[50] |
Weller D E. A reevaluation of the −3/2 power rule of plant self-thinning[J]. Ecological monographs, 1987, 57(1): 23−43. doi: 10.2307/1942637
|
[51] |
Weller D E. The interspecific size–density relationship among crowded plant stands and its implications for the −3/2 power rule of self-thinning[J]. American Naturalist, 1989, 133(1): 20−41. doi: 10.1086/284899
|
[52] |
Bi H, Turvey N D. A method of selecting data points for fitting the maximum biomass-density line for stands undergoing self-thinning[J]. Australian Journal of Ecology, 1997, 22(3): 356−359. doi: 10.1111/j.1442-9993.1997.tb00683.x
|
[53] |
付立华, 张建国, 段爱国, 等. 最大密度法则研究进展[J]. 植物生态学报, 2008, 32(2):501−511. doi: 10.3773/j.issn.1005-264x.2008.02.030
Fu L H, Zhang J G, Duan A G, et al. Review of studies on maximum size–density rules[J]. Journal of Plant Ecology, 2008, 32(2): 501−511. doi: 10.3773/j.issn.1005-264x.2008.02.030
|
[54] |
Osawa A, Allen R B. Allometric theory explains self-thinning relationships of mountain beech and red pine[J]. Ecology, 1993, 74(4): 1020−1032. doi: 10.2307/1940472
|
[55] |
Osawa A. Inverse relationship of crown fractal dimension to self-thinning exponent of tree populations: a hypothesis[J]. Canadian Journal of Forest Research, 1995, 25(10): 1608−1617. doi: 10.1139/x95-175
|
[56] |
Osawa A, Sugita S. The self-thinning rule: another interpretation of Weller’s results[J]. Ecology, 1989, 70(1): 279−283. doi: 10.2307/1938435
|
[57] |
Wilson D S, Seymour R S, Maguire D A. Density management diagram for northeastern red spruce and balsam fir forests[J]. Northern Journal of Applied Forestry, 1999, 16(1): 48−56. doi: 10.1093/njaf/16.1.48
|
[58] |
Newton P F. Forest production model for upland black spruce stands: optimal site occupancy levels for maximizing net production[J]. Ecological Modelling, 2006, 190: 190−204. doi: 10.1016/j.ecolmodel.2005.02.022
|
[59] |
Blackburn T M, Lawton J H, Perry J N. A method of estimating the slope of upper bounds of plots of body size and abundance in natural animal assemblages[J]. Oikos, 1992, 65(1): 107−112. doi: 10.2307/3544892
|
[60] |
Scharf F S, Juanes F, Sutherlang M. Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques[J]. Ecology, 1998, 79(2): 448−460. doi: 10.1890/0012-9658(1998)079[0448:IERFTE]2.0.CO;2
|
[61] |
孙洪刚, 张建国, 段爱国. 数据点选择与参数估计方法对杉木人工林自疏边界线的影响[J]. 植物生态学报, 2010, 34(4):56−63.
Sun H G, Zhang J G, Duan A G. A comparison of selecting data points and fitting coefficients methods for estimating self-thinning boundary line[J]. Chinese Journal of Plant Ecology, 2010, 34(4): 56−63.
|
[62] |
Weisberg S. Applied linear regression (4th Edition)[M]. Hoboken: John Wiley & Sons Press, 2014.
|
[63] |
Niklas K J. Plant allometry: the scaling of form and process[M]. Chicago: University of Chicago Press, 1994.
|
[64] |
Leduc D J. A comparative analysis of the reduced major axis technique of fitting lines to bivariate data[J]. Canadian Journal of Forest Research, 1987, 17(7): 654−659. doi: 10.1139/x87-107
|
[65] |
Bohonak A J. RMA: software for reduced major axis regression, Version 1.17[Z/OL]. San Diego: San Diego State University, 2004 [2019−10−12]. http://www.bio.sdsu.edu/pub/andy/rma.html.
|
[66] |
Weller D E. Self-thinning exponent correlated with allometric measures of plant geometry[J]. Ecology, 1987, 68(4): 813−821. doi: 10.2307/1938352
|
[67] |
Begin E, Begin J, Belanger L, et al. Balsam fir self-thinning relationship and its constancy among different ecological regions[J]. Canadian Journal of Forest Research, 2001, 31(6): 950−959. doi: 10.1139/x01-026
|
[68] |
Li H T, Han X G, Wu J G. Variant scaling relationship for mass-density across tree-dominated communities[J]. Journal of Integrative Plant Biology, 2006, 48(3): 268−277. doi: 10.1111/j.1744-7909.2006.00222.x
|
[69] |
Koenker R, Bassett G. Regression quantiles[J]. Econometrica, 1978, 46(1): 33−50. doi: 10.2307/1913643
|
[70] |
Cade B S, Noon B R. A gentle introduction to quantile regression for ecologists[J]. Frontiers in Ecology and the Environment, 2003, 1(8): 412−420. doi: 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2
|
[71] |
Greene W H. The econometric approach to efficiency analysis// Fried H O, Lovell C A K, Schmidt S S. The measurement of productive efficiency: techniques and applications[M]. New York: Oxford University Press, 1993: 68–119.
|
[72] |
Kopp R J, Mullahy J. Least squares estimation of econometric frontier models: consistent estimation and inference[J]. The Scandinavian Journal of Economics, 1993, 95(1): 125−132. doi: 10.2307/3440140
|
[73] |
Aigner D J, Chu S F. On estimating the industry production function[J]. American Economic Review, 1968, 58(4): 826−839.
|
[74] |
Greene W H. Maximum likelihood estimation of econometric frontier functions[J]. Journal of Econometrics, 1980, 13(1): 27−56. doi: 10.1016/0304-4076(80)90041-X
|
[75] |
Aigner D, Lovell C A K, Schmidt P. Formulation and estimation of stochastic frontier production function models[J]. European Journal of Clinical Pharmacology, 1977, 6(1): 21−37.
|
[76] |
Stevenson R. Likelihood functions for generalized stochastic frontier estimation[J]. Journal of Econometrics, 1980, 13(1): 58−66.
|
[77] |
Bi H, Wan G, Turvey N D. Estimating the self-thinning boundaey line as a density-dependent stochastic biomass frontier[J]. Ecology, 2000, 81(6): 1477−1483. doi: 10.1890/0012-9658(2000)081[1477:ETSTBL]2.0.CO;2
|
[78] |
Ogawa K. Relationships between mean shoot and root masses and density in an overcrowded population of hinoki (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) seedlings[J]. Forest Ecology and Management, 2005, 213(1): 391−398.
|
[79] |
Ogawa K. Time-trajectory of mean phytomass and density during a course of self-thinning in a sugi (Cryptomeria japonica D. Don) plantation[J]. Forest Ecology and Management, 2005, 214(1): 104−110.
|
[80] |
Del río M, Montero G, Bravo F. Analysis of diameter-density relationships and self-thinning in non-thinned even-aged Scots pine stands[J]. Forest Ecology and Management, 2001, 142(1): 79−87.
|
[81] |
Zeide B. How to measure stand density?[J]. Trees, 2005, 19(1): 1−14. doi: 10.1007/s00468-004-0343-x
|
[82] |
R Core Team. R: a language and environment for statistical computing[Z/OL]. 2015 [2018–11–19]. https://www.r–project.org/.
|
[83] |
Legendre P. lmodel2: Model II regression//R package, version 1.7–2[Z/OL]. 2014 [2018–12–05]. http://CRAN.R–project.org/package=lmodel2.
|
[84] |
Koenker R. Quantreg: quantile regression and related methods [Z/OL]. 2013 [2018–11–21]. http://cran.r–project.org/web/packages/quantreg/quantreg.
|
[85] |
Lindo Systems Inc. LINGO user’s guide[M]. Chicago: Lindo Systems Inc., 2013.
|
[86] |
Econometric Software Inc. LIMDEP 7.0 user’s manual (computer Manual)[M]. New York: Econometric Software Inc., 1998.
|
[87] |
Drew T J, Fleweling J W. Some recent japanese theories of yield–density relationships and their application to monterey pine plantations[J]. Forest Science, 1977, 23(4): 517−534.
|
[88] |
Bi H. The self-thinning surface[J]. Forest Science, 2001, 47(3): 361−370.
|
[89] |
Guo Q, Rundel P W. Self-thinning in early postfire chaparral succession: mechanisms, implications, and a combined approach[J]. Ecology, 1998, 79(2): 579−586. doi: 10.1890/0012-9658(1998)079[0579:STIEPC]2.0.CO;2
|
[90] |
Bi H. Stochastic frontier analysis of a classic self-thinning experiment[J]. Austral Ecology, 2004, 29(4): 408−417. doi: 10.1111/j.1442-9993.2004.01379.x
|
1. |
刘玉,曾思齐,龙时胜. 湖南栎类天然林自稀疏边界线及影响因素研究. 西北林学院学报. 2024(03): 77-83+124 .
![]() | |
2. |
牛青云,孟京辉. 北京市油松林碳储量密度控制图研制及应用. 西北林学院学报. 2024(06): 145-152 .
![]() | |
3. |
徐旭平,吕延杰,王建军. 内蒙古大兴安岭林区兴安落叶松人工林密度控制图研究. 自然保护地. 2023(04): 79-88 .
![]() |