• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Meng Jinghui. A comparison of different methods for fitting the self-thinning equation[J]. Journal of Beijing Forestry University, 2019, 41(12): 58-68. DOI: 10.12171/j.1000-1522.20190434
Citation: Meng Jinghui. A comparison of different methods for fitting the self-thinning equation[J]. Journal of Beijing Forestry University, 2019, 41(12): 58-68. DOI: 10.12171/j.1000-1522.20190434

A comparison of different methods for fitting the self-thinning equation

More Information
  • Received Date: October 11, 2019
  • Revised Date: December 02, 2019
  • Available Online: December 10, 2019
  • Published Date: November 30, 2019
  • ObjectiveFor evaluating the self-thinning theory, selecting the optimum fitting method that can truly describe self-thinning dynamics is a hot topic and a difficult task.
    MethodIn this study, we compared different approaches for fitting self-thinning equations, including three traditional methods, i.e., hand-fitting method, interval method and relative density (RD) method; three regression methods, i.e., ordinary least squares regression (OLS) method, reduced major axis regression (RMA) method and quantile regression (QR) method; and three frontier model methods, i.e., corrected OLS (COLS) method, deterministic frontier function (DFF) method and stochastic frontier function (SFF) method. The data from 553 sample plots of even-aged Chinese fir (Cunninghamia lanceolata) plantations in Fujian Province, eastern China was employed.
    ResultThe results indicated that hand-fitting method was easy but subjective. The coefficients estimated by interval method can be influenced significantly by interval length, and the estimated slope tended to be flatter than the real slope. The RD method can avoid influence of independent-density mortality, but the result would be affected by the predetermined theoretical constant for the slope. The maximum size-density lines fitted by the OLS, RMA and COLS methods tended to inaccurately match the actual boundaries of data points, and differed from the stand self-thinning upper boundary line. The maximum size-density line fitted by QR method can be close to the stand self-thinning upper boundary line when the quantile value approached 100%. The maximum size-density line fitted by linear programming approach was more suitable than the line fitted by quadratic programming approach. However, statistical inference was very difficult with the DFF and QR methods. SFF method was relatively objective, however, the fitted maximum size-density line can truly describe self-thinning process only when variance of stochastic error terms was small enough and close to zero.
    ConclusionFinally, the optimum self-thinning equation for Chinese fir plantations in Fujian Provence is determined as ln(QMD) = 7.795 − 0.620ln(N), which can provide a reference for developing efficient measures of stand density control.
  • [1]
    Cubbage F, Harou P, Sills E. Policy instruments to enhance multi-functional forest management[J]. Forest Policy and Economics, 2007, 9(7): 833−851. doi: 10.1016/j.forpol.2006.03.010
    [2]
    Meng J H, Lu Y C, Zeng J. Transformation of a degraded Pinus massoniana plantation into a mixed-species irregular forest: impacts on stand structure and growth in southern China[J]. Forests, 2014, 5(12): 3199−3221. doi: 10.3390/f5123199
    [3]
    Kanninen M. Plantation forests: Global perspectives//Ecosystem goods and services from plantation forests[M]. Bauhus J, van der Meer P, Kanninen M, Eds. London: Earthscan Press, 2010: 1–15.
    [4]
    国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 2009.

    National Forestry and Grassland Administration (NFGA). China forest resources report (2014–2018)[M]. Beijing: China Forestry Publishing House, 2019.
    [5]
    徐济德. 我国第八次森林资源清查结果及分析[J]. 林业经济, 2014(3):6−8.

    Xu J D. The 8th forest resources inventory results and analysis in China[J]. Forestry Economics, 2014(3): 6−8.
    [6]
    彭舜磊, 王得祥, 赵辉, 等. 我国人工林现状与近自然经营途径探讨[J]. 西北林学院学报, 2008, 23(2):184−188.

    Peng S L, Wang D X, Zhao H, et al. Discussing the status quality of plantation and near nature forestry management in China[J]. Journal Northwest Forestry University, 2008, 23(2): 184−188.
    [7]
    陆元昌, 张守攻, 雷相东, 等. 人工林近自然化改造的理论基础和实施技术[J]. 世界林业研究, 2009, 22(1):20−27.

    Lu Y C, Zhang S G, Lei X D, et al. Theoretical basis and implementation techniques on close-to-nature transformation of plantations[J]. World Forestry Research, 2009, 22(1): 20−27.
    [8]
    Drew T J, Flewelling J W. Stand density management: an alternative approach and its application to Douglas-Fir plantations[J]. Forest Science, 1979, 25(3): 518−532.
    [9]
    Bormann B T, Gordon J C. Stand density effects in young red alder plantations: productivity, photosynthate partitioning, and nitrogen fixation[J]. Ecology, 1984, 65(2): 394−402. doi: 10.2307/1941402
    [10]
    Castano S J, Barrio A M, Alvarez A P. Regional-scale stand density management diagrams for Pyrenean oak (Quercus pyrenaica Willd.) stands in north-west Spain[J]. Iforest, 2013, 6(2): 113−122.
    [11]
    Hibbs D E. The self-thinning rule and red alder management[J]. Forest Ecology and Management, 1987, 18(4): 273−281. doi: 10.1016/0378-1127(87)90131-9
    [12]
    Long J N. A practical approach to density management[J]. The Forestry Chronicle, 1985, 61(1): 23−27. doi: 10.5558/tfc61023-1
    [13]
    Newton P. Evaluating the ecological integrity of structural stand density management models developed for boreal conifers[J]. Forests, 2015, 6(4): 992−1030.
    [14]
    Mohler C L, Sprugel D G. Stand structure and allometry of trees during self-thinning of pure stands[J]. Journal of Ecology, 1978, 66(2): 599−614. doi: 10.2307/2259153
    [15]
    Enquist B J, Brown J H, West G B. Allometric scaling of plant energetics and population density[J]. Nature, 1998, 395: 163−165. doi: 10.1038/25977
    [16]
    Xue L, Ogawa K, Hagihara, et al. Self-thinning exponents based on the allometric model in Chinese pine (Pinus tabulaeformis Carr.) and Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr) stands[J]. Forest Ecology and Management, 1999, 117(1): 87−93.
    [17]
    Pretzsch H. A unified law of spatial allometry for woody and herbaceous plants[J]. Plant Biology, 2002, 4(2): 159−166. doi: 10.1055/s-2002-25732
    [18]
    Inoue A, Miyake M, Nishizono T. Allometric model of the Reineke equation for Japanese cypress (Chamaecyparis obtusa) and red pine (Pinus densiflora) stands[J]. Journal of Forest Research, 2004, 9(4): 319−324. doi: 10.1007/s10310-004-0084-0
    [19]
    Reineke L H. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 46(7): 627−638.
    [20]
    Yoda K, Kira T, Ogawa H, et al. Self-thinning in overcrowded pure stands under cultivated and natural conditions[J]. Journal of Biology, 1963, 14: 107−129.
    [21]
    Westoby M. The self-thinning rule[J]. Advances in Ecological Research, 1984, 14(2): 167−225.
    [22]
    Zhang L, Bi H, Gove J H, et al. A comparison of alternative methods for estimating the self-thinning boundary line[J]. Canadian Journal of Forest Research, 2005, 35(6): 1507−1514. doi: 10.1139/x05-070
    [23]
    Vospernik S, Sterba H. Do competition-density rule and self-thinning rule agree?[J]. Annals of Forest Science, 2005, 72(3): 379−390.
    [24]
    White J, Happer J L. Correlated changes in plant size and number in plant populations[J]. Journal of Ecology, 1970, 58(2): 467−485. doi: 10.2307/2258284
    [25]
    Gorham E. Shoot height, weight and standing crop in relation to density of monospecific plant stands[J]. Nature, 1979, 279: 148−150. doi: 10.1038/279148a0
    [26]
    White J. Demographic factors in populations of plants//Demography and evolution in plant populations[M]. Solbrig O T, Ed. Oxford: Blackwell Publishing, 1980: 21–48.
    [27]
    Jack S B, Long J N. Linkages between silviculture and ecology: an analysis of density management diagrams[J]. Forest Ecology and Management, 1996, 86(1–3): 205−220.
    [28]
    Luis J F S, Fonseca T F. The allometric model in the stand density management of Pinus pinaster Ait. in Portugal[J]. Annals of Forest Science, 2004, 61(8): 807−814. doi: 10.1051/forest:2004077
    [29]
    Lonsdale W M, Watkinson A R. Tiller dynamics and self-thinning in grassland habitats[J]. Oecologia, 1983, 60(3): 390−395. doi: 10.1007/BF00376857
    [30]
    Dunhan J B, Vinyard G L. Relationships between body mass, population density, and the self-thinning rule in stream-living salmonids[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(5): 1025−1030. doi: 10.1139/f97-012
    [31]
    Pretzsch H. Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.): evidence from long-term experimental plots[J]. European Journal of Forest Research, 2005, 124(3): 193−205. doi: 10.1007/s10342-005-0068-4
    [32]
    Solomon D S, Zhang L. Maximum size–density relationships for mixed softwoods in the northeastern USA[J]. Forest Ecology and Management, 2002, 155(1–3): 163−170.
    [33]
    Zeide B. Tolerance and self-tolerance of trees[J]. Forest Ecology and Management, 1985, 13(3–4): 149−166.
    [34]
    Weller D E. Will the real self-thinning rule please stand up? A reply to Osawa and Sugita[J]. Ecology, 1990, 71: 1204−1207. doi: 10.2307/1937389
    [35]
    Puettmann K J, Hann D W, Hibbs D E. Evaluation of the size-density relationships for pure red alder and Douglas-fir stands[J]. Forest Science, 1993, 39(1): 7−27.
    [36]
    Morris E C. Self-thinning lines differ with fertility level[J]. Ecological Research, 2002, 17(1): 17−28. doi: 10.1046/j.1440-1703.2002.00459.x
    [37]
    Pretzsch H. Species-specific allometric scaling under self-thinning: evidence from long-term plots in forest stands[J]. Oecologia, 2006, 146(6): 572−583.
    [38]
    Ge F, Zeng W, Ma W, et al. Does the slope of the self-thinning line remain a constant value across different site qualities? An implication for plantation density management[J/OL]. Forests, 2017, 8(10): f8100355 [2019−09−11]. http://www.doc88.com/p-1476329079105.html.
    [39]
    West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology[J]. Science, 1997, 276: 122−126. doi: 10.1126/science.276.5309.122
    [40]
    Enquist B J, West G B, Charnov E L, et al. Allometric scaling of production and life history variation in vascular plants[J]. Nature, 1997, 65(9): 3529−3538.
    [41]
    West G B, Brown J H, Enquist B J. A general model for the structure and allometry of plant vascular systems[J]. Nature, 1999, 400: 664−667. doi: 10.1038/23251
    [42]
    Brown J H, West G B, Enquist B J. Yes, West, Brown and Enquist’s model of allometric scaling is both mathematically correct and biologically relevant[J]. Functional Ecology, 2005, 19(4): 735−738. doi: 10.1111/j.1365-2435.2005.01022.x
    [43]
    Deng J M, Wang G X, Morris E C, et al. Plant mass-density relationship along a moisture gradient in north-west China[J]. Journal of Ecology, 2006, 94(5): 953−958. doi: 10.1111/j.1365-2745.2006.01141.x
    [44]
    Franco M, Kelly C K. The interspecific mass–density relationship and plant geometry[J]. Proceedings of the National Academy of Sciences, 1998, 95(13): 7830−7835. doi: 10.1073/pnas.95.13.7830
    [45]
    Belgrano A, Allen A P, Enquist B J, et al. Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants[J]. Ecology Letters, 2002, 5(5): 611−613. doi: 10.1046/j.1461-0248.2002.00364.x
    [46]
    Zeide B. Analysis of the 3/2 power law of self-thinning[J]. Forest Science, 1987, 33(2): 517−537.
    [47]
    Cao W V, Dean T J, Vcjr B. Modeling the size-density relationship in direct seeded slash pine stands[J]. Forest Science, 2000, 46(3): 317−321.
    [48]
    Lonsdale W. The self-thinning rule: dead or alive?[J]. Ecology, 1990, 71(4): 1373−1388. doi: 10.2307/1938275
    [49]
    Hamilton N S, Matthew C, Lemaire G. In defence of the −3/2 boundary rule: a reevaluation of self-thinning concepts and status[J]. Annals of Botany, 1995, 76(6): 569−577. doi: 10.1006/anbo.1995.1134
    [50]
    Weller D E. A reevaluation of the −3/2 power rule of plant self-thinning[J]. Ecological monographs, 1987, 57(1): 23−43. doi: 10.2307/1942637
    [51]
    Weller D E. The interspecific size–density relationship among crowded plant stands and its implications for the −3/2 power rule of self-thinning[J]. American Naturalist, 1989, 133(1): 20−41. doi: 10.1086/284899
    [52]
    Bi H, Turvey N D. A method of selecting data points for fitting the maximum biomass-density line for stands undergoing self-thinning[J]. Australian Journal of Ecology, 1997, 22(3): 356−359. doi: 10.1111/j.1442-9993.1997.tb00683.x
    [53]
    付立华, 张建国, 段爱国, 等. 最大密度法则研究进展[J]. 植物生态学报, 2008, 32(2):501−511. doi: 10.3773/j.issn.1005-264x.2008.02.030

    Fu L H, Zhang J G, Duan A G, et al. Review of studies on maximum size–density rules[J]. Journal of Plant Ecology, 2008, 32(2): 501−511. doi: 10.3773/j.issn.1005-264x.2008.02.030
    [54]
    Osawa A, Allen R B. Allometric theory explains self-thinning relationships of mountain beech and red pine[J]. Ecology, 1993, 74(4): 1020−1032. doi: 10.2307/1940472
    [55]
    Osawa A. Inverse relationship of crown fractal dimension to self-thinning exponent of tree populations: a hypothesis[J]. Canadian Journal of Forest Research, 1995, 25(10): 1608−1617. doi: 10.1139/x95-175
    [56]
    Osawa A, Sugita S. The self-thinning rule: another interpretation of Weller’s results[J]. Ecology, 1989, 70(1): 279−283. doi: 10.2307/1938435
    [57]
    Wilson D S, Seymour R S, Maguire D A. Density management diagram for northeastern red spruce and balsam fir forests[J]. Northern Journal of Applied Forestry, 1999, 16(1): 48−56. doi: 10.1093/njaf/16.1.48
    [58]
    Newton P F. Forest production model for upland black spruce stands: optimal site occupancy levels for maximizing net production[J]. Ecological Modelling, 2006, 190: 190−204. doi: 10.1016/j.ecolmodel.2005.02.022
    [59]
    Blackburn T M, Lawton J H, Perry J N. A method of estimating the slope of upper bounds of plots of body size and abundance in natural animal assemblages[J]. Oikos, 1992, 65(1): 107−112. doi: 10.2307/3544892
    [60]
    Scharf F S, Juanes F, Sutherlang M. Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques[J]. Ecology, 1998, 79(2): 448−460. doi: 10.1890/0012-9658(1998)079[0448:IERFTE]2.0.CO;2
    [61]
    孙洪刚, 张建国, 段爱国. 数据点选择与参数估计方法对杉木人工林自疏边界线的影响[J]. 植物生态学报, 2010, 34(4):56−63.

    Sun H G, Zhang J G, Duan A G. A comparison of selecting data points and fitting coefficients methods for estimating self-thinning boundary line[J]. Chinese Journal of Plant Ecology, 2010, 34(4): 56−63.
    [62]
    Weisberg S. Applied linear regression (4th Edition)[M]. Hoboken: John Wiley & Sons Press, 2014.
    [63]
    Niklas K J. Plant allometry: the scaling of form and process[M]. Chicago: University of Chicago Press, 1994.
    [64]
    Leduc D J. A comparative analysis of the reduced major axis technique of fitting lines to bivariate data[J]. Canadian Journal of Forest Research, 1987, 17(7): 654−659. doi: 10.1139/x87-107
    [65]
    Bohonak A J. RMA: software for reduced major axis regression, Version 1.17[Z/OL]. San Diego: San Diego State University, 2004 [2019−10−12]. http://www.bio.sdsu.edu/pub/andy/rma.html.
    [66]
    Weller D E. Self-thinning exponent correlated with allometric measures of plant geometry[J]. Ecology, 1987, 68(4): 813−821. doi: 10.2307/1938352
    [67]
    Begin E, Begin J, Belanger L, et al. Balsam fir self-thinning relationship and its constancy among different ecological regions[J]. Canadian Journal of Forest Research, 2001, 31(6): 950−959. doi: 10.1139/x01-026
    [68]
    Li H T, Han X G, Wu J G. Variant scaling relationship for mass-density across tree-dominated communities[J]. Journal of Integrative Plant Biology, 2006, 48(3): 268−277. doi: 10.1111/j.1744-7909.2006.00222.x
    [69]
    Koenker R, Bassett G. Regression quantiles[J]. Econometrica, 1978, 46(1): 33−50. doi: 10.2307/1913643
    [70]
    Cade B S, Noon B R. A gentle introduction to quantile regression for ecologists[J]. Frontiers in Ecology and the Environment, 2003, 1(8): 412−420. doi: 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2
    [71]
    Greene W H. The econometric approach to efficiency analysis// Fried H O, Lovell C A K, Schmidt S S. The measurement of productive efficiency: techniques and applications[M]. New York: Oxford University Press, 1993: 68–119.
    [72]
    Kopp R J, Mullahy J. Least squares estimation of econometric frontier models: consistent estimation and inference[J]. The Scandinavian Journal of Economics, 1993, 95(1): 125−132. doi: 10.2307/3440140
    [73]
    Aigner D J, Chu S F. On estimating the industry production function[J]. American Economic Review, 1968, 58(4): 826−839.
    [74]
    Greene W H. Maximum likelihood estimation of econometric frontier functions[J]. Journal of Econometrics, 1980, 13(1): 27−56. doi: 10.1016/0304-4076(80)90041-X
    [75]
    Aigner D, Lovell C A K, Schmidt P. Formulation and estimation of stochastic frontier production function models[J]. European Journal of Clinical Pharmacology, 1977, 6(1): 21−37.
    [76]
    Stevenson R. Likelihood functions for generalized stochastic frontier estimation[J]. Journal of Econometrics, 1980, 13(1): 58−66.
    [77]
    Bi H, Wan G, Turvey N D. Estimating the self-thinning boundaey line as a density-dependent stochastic biomass frontier[J]. Ecology, 2000, 81(6): 1477−1483. doi: 10.1890/0012-9658(2000)081[1477:ETSTBL]2.0.CO;2
    [78]
    Ogawa K. Relationships between mean shoot and root masses and density in an overcrowded population of hinoki (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) seedlings[J]. Forest Ecology and Management, 2005, 213(1): 391−398.
    [79]
    Ogawa K. Time-trajectory of mean phytomass and density during a course of self-thinning in a sugi (Cryptomeria japonica D. Don) plantation[J]. Forest Ecology and Management, 2005, 214(1): 104−110.
    [80]
    Del río M, Montero G, Bravo F. Analysis of diameter-density relationships and self-thinning in non-thinned even-aged Scots pine stands[J]. Forest Ecology and Management, 2001, 142(1): 79−87.
    [81]
    Zeide B. How to measure stand density?[J]. Trees, 2005, 19(1): 1−14. doi: 10.1007/s00468-004-0343-x
    [82]
    R Core Team. R: a language and environment for statistical computing[Z/OL]. 2015 [2018–11–19]. https://www.r–project.org/.
    [83]
    Legendre P. lmodel2: Model II regression//R package, version 1.7–2[Z/OL]. 2014 [2018–12–05]. http://CRAN.R–project.org/package=lmodel2.
    [84]
    Koenker R. Quantreg: quantile regression and related methods [Z/OL]. 2013 [2018–11–21]. http://cran.r–project.org/web/packages/quantreg/quantreg.
    [85]
    Lindo Systems Inc. LINGO user’s guide[M]. Chicago: Lindo Systems Inc., 2013.
    [86]
    Econometric Software Inc. LIMDEP 7.0 user’s manual (computer Manual)[M]. New York: Econometric Software Inc., 1998.
    [87]
    Drew T J, Fleweling J W. Some recent japanese theories of yield–density relationships and their application to monterey pine plantations[J]. Forest Science, 1977, 23(4): 517−534.
    [88]
    Bi H. The self-thinning surface[J]. Forest Science, 2001, 47(3): 361−370.
    [89]
    Guo Q, Rundel P W. Self-thinning in early postfire chaparral succession: mechanisms, implications, and a combined approach[J]. Ecology, 1998, 79(2): 579−586. doi: 10.1890/0012-9658(1998)079[0579:STIEPC]2.0.CO;2
    [90]
    Bi H. Stochastic frontier analysis of a classic self-thinning experiment[J]. Austral Ecology, 2004, 29(4): 408−417. doi: 10.1111/j.1442-9993.2004.01379.x
  • Related Articles

    [1]Jiang Jun, Chen Changqi, Chen Beibei, Wang Hao, Hu Dongyang, Zhang Yong, Zhang Yongfu, Li Jie, Zheng Junpeng. Effects of stand density on carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption of Platycladus orientalis plantations in rocky mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(10): 33-41. DOI: 10.12171/j.1000-1522.20240011
    [2]Xu Depeng, Xu Fangze, Sun Hailong, Chen Meiqing, Xiang Wei. Comparison of methods for dividing developmental stages of natural mixed forest stands[J]. Journal of Beijing Forestry University, 2024, 46(7): 139-152. DOI: 10.12171/j.1000-1522.20230174
    [3]Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Liu Ting. Growth patterns of Juglans mandshurica secondary forest with stand age and stand density in Northeast China[J]. Journal of Beijing Forestry University, 2024, 46(6): 10-19. DOI: 10.12171/j.1000-1522.20230171
    [4]Pan Xin, Li Jun, Sun Shuaichao, Chen Minghua, Hua Weiping, Jiang Xidian. Timber assortment structure and outturn model for final felling stands of Cunninghamia lanceolata plantations[J]. Journal of Beijing Forestry University, 2023, 45(8): 84-93. DOI: 10.12171/j.1000-1522.20230031
    [5]Wang Ziming, Zhao Mingming, Ren Yunmao, Zhan Jiping, Li Zhiyao, Yu Lixin, Yu Qingjun, Jia Zhongkui. Response of growth and soil properties of Chinese pine building timber forest at felling age to stand density[J]. Journal of Beijing Forestry University, 2022, 44(12): 88-101. DOI: 10.12171/j.1000-1522.20210442
    [6]Wang Shanshan, Bi Huaxing, Cui Yanhong, Yun Huiya, Ma Xiaozhi, Zhao Danyang, Hou Guirong. Key indexes and characteristics of soil anti-erodibility of Robinia pseudoacacia with different densities in loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 94-104. DOI: 10.12171/j.1000-1522.20200226
    [7]Jin Suo, Bi Haojie, Liu Jia, Liu Yuhang, Wang Yu, Qi Jinqiu, Hao Jianfeng. Effects of stand density on community structure and species diversity of Cupressus funebris plantation in Yunding Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 10-17. DOI: 10.12171/j.1000-1522.20190202
    [8]Liu Kai, He Kang-ning, Wang Xian-bang. Hydrological effects of litter of Betula platyphylla forest with different densities in alpine region, Qinghai of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 89-97. DOI: 10.13332/j.1000-1522.20170225
    [9]ZHAO Zhong-hua, HUI Gang-ying, HU Yan-bo, LI Yuan-fa, WANG Hong-xiang.. Method and application of stand spatial advantage degree based on the neighborhood comparison.[J]. Journal of Beijing Forestry University, 2014, 36(1): 78-82.
    [10]XU Cheng-yang, ZHANG Hua, JIA Zhong-kui, XUE Kang, DU Peng-zhi, WANG Jing-guo. Effects of stand density and site types on root characteristics of Platycladus orientalis plantations in Beijing mountainous area[J]. Journal of Beijing Forestry University, 2007, 29(4): 95-99. DOI: 10.13332/j.1000-1522.2007.04.022
  • Cited by

    Periodical cited type(3)

    1. 刘玉,曾思齐,龙时胜. 湖南栎类天然林自稀疏边界线及影响因素研究. 西北林学院学报. 2024(03): 77-83+124 .
    2. 牛青云,孟京辉. 北京市油松林碳储量密度控制图研制及应用. 西北林学院学报. 2024(06): 145-152 .
    3. 徐旭平,吕延杰,王建军. 内蒙古大兴安岭林区兴安落叶松人工林密度控制图研究. 自然保护地. 2023(04): 79-88 .

    Other cited types(2)

Catalog

    Article views (7326) PDF downloads (117) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return