• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Bai Tianjun, Liu Yuanqiu, Wen Linsheng, Pan Jun, Cao Wen, Zheng Xiling, Zou Qin, Deng Wengping. Response of earlywood and latewood ring width of Cryptomeria japonica to climate change in Lushan Mountain, eastern China[J]. Journal of Beijing Forestry University, 2020, 42(9): 61-69. DOI: 10.12171/j.1000-1522.20190439
Citation: Bai Tianjun, Liu Yuanqiu, Wen Linsheng, Pan Jun, Cao Wen, Zheng Xiling, Zou Qin, Deng Wengping. Response of earlywood and latewood ring width of Cryptomeria japonica to climate change in Lushan Mountain, eastern China[J]. Journal of Beijing Forestry University, 2020, 42(9): 61-69. DOI: 10.12171/j.1000-1522.20190439

Response of earlywood and latewood ring width of Cryptomeria japonica to climate change in Lushan Mountain, eastern China

More Information
  • Received Date: November 24, 2019
  • Revised Date: March 18, 2020
  • Available Online: September 10, 2020
  • Published Date: September 29, 2020
  •   Objective  This paper aims to study the correlations between earlywood width, latewood width of Cryptomeria japonica and temperature as well as precipitation in Lushan Mountain of eastern China, so as to reveal the response of radial growth of C. japonica to climate, to understand the impact of climate change on forest ecosystem in this area, and to provide evidence for the protection of C. japonica and the selection of afforestation area under the condition of climate change in the future.
      Method  Studying the main distribution of forest coniferous species, C. japonica in the Lushan Nature Reserve, the tree core samples of C. japonica were sampled and treated by dendrography, and the standard chronology of earlywood and latewood was established. Correlation analysis of climatic factors in Lushan area with the tree-ring standard chronology was taken.
      Result  (1) All the statistical characteristics of the earlywood chronology were better than the latewood chronology. Compared with the radial growth of the latewood, the radial growth of the earlywood was more sensitive to the change of the monthly mean temperature. (2) The average annual temperature and annual precipitation in this area showed a significant increasing trend, the average temperature in each month showed an upward trend except August. (3) The radial growth of the C. japonica was mainly affected by the temperature, the lag effect of temperature on the growth of earlywood was particularly obvious. High temperature in summer (July) not only hindered the growth of ring width of earlywood in that year, but also affected the formation of earlywood in the next growing season. The increase of precipitation in growing season (April to July) was beneficial to the formation of earlywood and latewood in the growing season.
      Conclusion  The changes of temperature and precipitation in different seasons affect the formation and growth of the earlywood and latewood. Under the background of future climate warming, the C. japonica forest in Lushan area may appear the phenomenon of growth decline.
  • [1]
    Hughes M K. Dendroclimatology in high-resolution paleoclimatology[M]. Dordrecht: Springer , 2011: 17–34.
    [2]
    Cook E R, Kairiukstis L. Methods of dendrochronology: applications in the environmental sciences[M]. New York: Springer, 1990.
    [3]
    Fonti P, Von Arx G, Garcia-Gonzalez I, et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings[J]. New Phytologist, 2010, 185(1): 42−53. doi: 10.1111/j.1469-8137.2009.03030.x
    [4]
    郭明辉, 赵西平. 木材气候学导论[M]. 北京: 科学出版社, 2009.

    Guo M H, Zhao X P. Introduction to wood climatology[M]. Beijing: Science Press, 2009.
    [5]
    王婷, 于丹, 李江风, 等. 树木年轮宽度与气候变化关系研究进展[J]. 植物生态学报, 2003, 27(1):23−33.

    Wang T, Yu D, Li J F, et al. Advance in research on the relationship between climatic change and tree-ring width[J]. Acta Phytoecologica Sinica, 2003, 27(1): 23−33.
    [6]
    陈峰, 袁玉江, 魏文寿, 等. 树轮记录的酒泉近240 a来6 —9月气温变化[J]. 干旱区研究, 2012, 29(1):47−54.

    Chen F, Yuan Y J, Wei W S, et al. Temperature change recorded by tree ring in Jiuquan during the period from June to September in recent 240 years[J]. Arid Zone Research, 2012, 29(1): 47−54.
    [7]
    Yang B, Qin C, Wang J L, et al. A 3,500-year tree-ring record of annual precipitationon the northeastern Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2014, 111(8): 2903−2908. doi: 10.1073/pnas.1319238111
    [8]
    赵安玖, 郭世刚, 杨旭, 等. 川西南柳杉早材、晚材年表与温度和降雨的关系[J]. 长江流域资源与环境, 2014, 23(11):1603−1609.

    Zhao A J, Guo S G, Yang X, et al. Relationship between radial growth of earlywood, latewood of Cryptomeria fortune with temperature and precipitation change in southwest Sichuan Province, China[J]. Resourcces and Environment in the Yangtze Basin, 2014, 23(11): 1603−1609.
    [9]
    Citlalli C A, Marín P G, Andrea C A, et al. Earlywood and latewood widths of Picea chihuahuana show contrasting sensitivity to seasonal climate[J]. Forests, 2017, 8(6): 173.
    [10]
    Kress A, Young G H F, Saurer M, et al. Stable isotope coherence in the earlywood and latewood of tree-line conifers[J]. Chemical Geology, 2009, 268(1−2): 52−57. doi: 10.1016/j.chemgeo.2009.07.008
    [11]
    Kerhoulas L P, Kolb T E, Koch G W, et al. The influence of monsoon climate on latewood growth of southwestern ponderosa pine[J]. Forests, 2017, 8(5): 140. doi: 10.3390/f8050140
    [12]
    张同文, 袁玉江, 喻树龙, 等. 树轮灰度与树轮密度的对比分析及其对气候要素的响应[J]. 生态学报, 2011, 31(22):6743−6752.

    Zhang T W, Yuan Y J, Yu S L, et al. Contrastive analysis and climatic response of tree-ring gray valuesand tree-ring densities[J]. Acta Ecologica Sinica, 2011, 31(22): 6743−6752.
    [13]
    申瑞新. 基于树轮灰度年表的伊犁地区北天山南坡气候研究[J]. 科技资讯, 2012(8):202−204. doi: 10.3969/j.issn.1672-3791.2012.08.166

    Shen R X. Study on the climate of the southern slope of the north Tianshan Mountain in Yili area based on the chronology of tree-ring gray scale[J]. Science & Technology Information, 2012(8): 202−204. doi: 10.3969/j.issn.1672-3791.2012.08.166
    [14]
    Franceschini T, Bontemps J D, Leban J M. Transient historical decrease in earlywood and latewood density and unstable sensitivity to summer temperature for Norway spruce in northeastern France[J]. Revue Canadienne De Recherche Forestière, 2012, 42(2): 219−226. doi: 10.1139/x11-182
    [15]
    Sun Y, Wang L, Yin H. Influence of climatic factors on tree-ring maximum latewood density of Picea schrenkiana in Xinjiang, China[J]. Frontiers of Earth Science, 2016, 10(1): 126−134. doi: 10.1007/s11707-015-0507-6
    [16]
    Fonti P, Babushkina E A. Tracheid anatomical responses to climate in a forest-steppe in southern Siberia[J]. Dendrochronologia, 2016, 39: 32−41. doi: 10.1016/j.dendro.2015.09.002
    [17]
    Babushkina E A, Belokopytova L V, Kostyakova T V, et al. Earlywood and latewood features of Pinus sylvestris in semiarid natural zones of South Siberia[J]. Russian Journal of Ecology, 2018, 49(3): 209−217. doi: 10.1134/S1067413618030013
    [18]
    Ram S, Borgaonkar H P. Climatic response of various tree ring parameters of fir (Abies pindrow) from Chandanwadi in Jammu and Kashmir, western Himalaya, India[J]. Research Communications, 2014, 106(11): 1568−1576.
    [19]
    Dannenberg M P, Wise E K. Seasonal climate signals from multiple tree ring metrics: a case study of Pinus ponderosa in the upper Columbia River Basin[J]. Journal of Geophysical Research-Biogeosciences, 2016, 121(4): 1178−1189. doi: 10.1002/2015JG003155
    [20]
    Tejedor E, Saz M A, Esper J, et al. Summer drought reconstruction in northeastern Spain inferred from a tree ring latewood network since 1734[J]. Geophysical Research Letters, 2017, 44(16): 8492−8500. doi: 10.1002/2017GL074748
    [21]
    蔡小虎, 李迈和, Paolo Cherubini, 等. 日本柳杉生长对气候的响应[J]. 四川林业科技, 2006, 27(3):1−4.

    Cai X H, Li M H, Cherubini P, et al. Radial growth responses of Cryptomeria japonica to the climate[J]. Journal of Sichuan Forestry Science and Technology, 2006, 27(3): 1−4.
    [22]
    张同文, 袁玉江, 魏文寿, 等. 浑善达克沙地白扦树轮早晚材宽度年表对比分析[J]. 沙漠与绿洲气象, 2016, 10(1):47−53.

    Zhang T W, Yuan Y J, Wei W S, et al. Developments and analysis of multi-tree-ring width chronologies of meyer spruce in the Ortindag Sandland[J]. Desert and Oasis Meteorology, 2016, 10(1): 47−53.
    [23]
    Wang H M, Wu J B, Sun B Y, et al. Response of radial growth of Pinus armandii to climate change in the Qinling Mountains[J]. Nature Environment and Pollution Technology, 2016, 15(3): 903−909.
    [24]
    刘信中, 王琅. 江西省庐山自然保护区生物多样性科学调查与研究[M]. 北京: 科学出版社, 2010.

    Liu X Z, Wang L. Scientific investigation and research on biodiversity in Lushan Nature Reserve, Jiangxi Province[M]. Beijing: Science Press, 2010.
    [25]
    万加武, 夏海林, 周赛霞, 等. 江西庐山国家级自然保护区珍稀濒危植物优先保护定量研究[J]. 热带亚热带植物学报, 2019, 27(2):171−180.

    Wan J W, Xia H L, Zhou S X, et al. Quantitative study on conservation priority of rare and endangered plants in Lushan National Nature Reserve, Jiangxi[J]. Journal of Tropical and Subtropical Botany, 2019, 27(2): 171−180.
    [26]
    居翔汉, 徐正法. 日本柳杉、日本扁柏生长情况的调查研究[J]. 林业科技通讯, 1986(12):18−21.

    Ju X H, Xu Z F. Investigation on the growth of Cryptomeria japonica and Chamaecyparia obtasa[J]. Forest Science and Technology, 1986(12): 18−21.
    [27]
    何海. 使用WinDENDRO测量树轮宽度及交叉定年方法[J]. 重庆师范大学学报(自然科学版), 2005, 22(4):39−44.

    He H. Measurement of tree-ring width with WinDENDRO and crossdating methods[J]. Journal of Chongqing Normal University( Natural Science Edition), 2005, 22(4): 39−44.
    [28]
    Sheppard P R, Graumlich L J, Conkey L E. Reflected-light image analysis of conifer tree rings for reconstructing climate[J]. The Holocene, 1996, 6(1): 62−68. doi: 10.1177/095968369600600107
    [29]
    Griffin D, Meko D M, Touchan R, et al. Latewood chronology development forsummer-moisture reconstruction in the U.S. Southwest[J]. Tree-Ring Research, 2011, 67(7): 87−101.
    [30]
    Holmes R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-Ring Bulletin, 1983, 43: 69−78.
    [31]
    Cook E R. A time-serises analysis approach to tree-rings[M]. Tucsson: University of Arizona, 1985.
    [32]
    国家气候中心. 中国气候变化蓝皮书(2018)[EB/OL]. (2018−04−04)[2019−10−28]. https://www.ncc-cma.net/Website/index.php?ChannelID=2&NewsID=10735.

    National Climate Center. China blue book on climate change (2018)[EB/OL]. (2018−04−04)[2019−10−28]. https://www.ncc-cma.net/Website/index.php?annelID=2&NewsID=10735.
    [33]
    Park W A, Allen C D, Macalady A K, et al. Temperature as a potent driver of regional forest drought stress and tree mortality[J]. Nature Climate Change, 2013, 3(3): 292−297. doi: 10.1038/nclimate1693
    [34]
    Liu H Y, Williams A P, Allen C D, et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia[J]. Global Change Biology, 2013, 19(8): 2500−2510. doi: 10.1111/gcb.12217
    [35]
    石松林, 靳甜甜, 刘国华, 等. 气候变暖抑制西藏拉萨河大果圆柏树木生长[J]. 生态学报, 2018, 38(24):8964−8972.

    Shi S L, Jin T T, Liu G H, et al. Climate warming decelerates growth of Sabina tibetica in Lhasa River area of Tibet[J]. Acta Ecologica Sinica, 2018, 38(24): 8964−8972.
    [36]
    乔晶晶, 王童, 潘磊, 等. 不同海拔和坡向马尾松树轮宽度对气候变化的响应[J]. 应用生态学报, 2019, 30(7):2231−2240.

    Qiao J J, Wang T, Pan L, et al. Responses of radial growth to climate change in Pinus massoniana at different altitudes and slopes[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2231−2240.
    [37]
    董志鹏, 郑怀舟, 方克艳, 等. 福建三明马尾松树轮宽度对气候变化的响应[J]. 亚热带资源与环境学报, 2014, 9(1):1−7.

    Dong Z P, Zheng H Z, Fang K Y, et al. Responses of tree-ring width of Pinus massiniana in Sanming, Fujian Province to climatechange[J]. Journal of Subtropical Resources and Environment, 2014, 9(1): 1−7.
    [38]
    李越, 李胜利, 杨昌腾, 等. 南岭华南五针松树轮宽度对气候因子的响应[J]. 亚热带资源与环境学报, 2016, 11(1):26−31.

    Li Y, Li S L, Yang C T, et al. Responses of tree-ring width of Pinus kwangtungensis to climaic factors in Nanling[J]. Journal of Subtropical Resources and Environment, 2016, 11(1): 26−31.
    [39]
    González I G, Eckstein D. Climatic signal of earlywood vessels of oak on a maritime site[J]. Tree Physiology, 2003, 23(7): 497−504. doi: 10.1093/treephys/23.7.497
    [40]
    Gou X H, Chen F H, Jacoby G, et al. Rapid tree growth withrespect to the last 400 years in response to climate warming, northEastern Tibetan Plateau[J]. International Journal of Climatology, 2007, 27(11): 1497−1503. doi: 10.1002/joc.1480
    [41]
    郑广宇, 王文杰, 王晓春, 等. 帽儿山地区兴安落叶松人工林树木年轮气候学研究[J]. 植物研究, 2012, 32(2):191−197.

    Zhang G Y, Wang W J, Wang X C, et al. Tree-ring climatology of Larix gmelinii in Maoershan Region[J]. Bulletin of Botanical Research, 2012, 32(2): 191−197.
    [42]
    程瑞梅, 刘泽彬, 封晓辉, 等. 气候变化对树木木质部生长影响的研究进展[J]. 林业科学, 2015, 51(6):147−154.

    Cheng R M, Liu Z B, Feng X H, et al. Advances in research on the effect of climatic change on xylem growth of trees[J]. Scientia Silvae Sinicae, 2015, 51(6): 147−154.
    [43]
    Gričar J, Zupančič M, Čufar K, et al. Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Norway spruce[J]. Wood Science & Technology, 2007, 41(6): 463−475.
    [44]
    Cullen L E, Palmer J G, Duncan R P, et al. Climate change and tree-ring relationships of Nothofagus menziesii, tree-line forests[J]. Canadian Journal of Forest Research, 2001, 31(11): 1982−1991.
    [45]
    张金泉. 庐山自然保护区及其自然资源特点[J]. 人与生物圈, 1997, 8(4):37−40.

    Zhang J Q. Lushan Mountain Nature Reserve and its characteristics of natural resources[J]. Man and the Biosphere, 1997, 8(4): 37−40.
    [46]
    崔明星, 何兴元, 陈玮, 等. 河北木兰围场油松年轮生态学的初步研究[J]. 应用生态学报, 2008, 19(11):2329−2345.

    Cui M X, He X Y, Chen W, et al. Dendrochronology of Chinese pine in Mulan-Weichang, Hebei Province:a primary study[J]. Chinese Journal of Applied Ecology, 2008, 19(11): 2329−2345.
    [47]
    黄学林. 植物发育生物学[M]. 北京: 科学出版社, 2012.

    Huang X L. Plant developmentalal biology[M]. Beijing: Science Press, 2012.
  • Cited by

    Periodical cited type(15)

    1. 冯旭环,周璐,熊伟,宗桦. 大渡河干热河谷区本土优势灌草植物根系的抗拉力学特性及其影响因素研究. 干旱区资源与环境. 2023(07): 159-169 .
    2. 李宏斌,张旭,姚晨,杜峰. 陕北黄土区不同植物根系抗拉力学特性研究. 水土保持研究. 2023(04): 122-129 .
    3. 李金波,伍红燕,赵斌,陈济丁,宋桂龙. 模拟边坡条件下常见护坡植物苗期根系构型特征. 生态学报. 2023(24): 10131-10141 .
    4. 赵佳愉,伍红燕,史蔚林,宋桂龙. 聚丙烯酰胺添加浓度对种基盘特性的影响. 草原与草坪. 2021(05): 16-21 .
    5. 黄炎和,李思诗,岳辉,彭绍云,谢炎敏,林根根,周曼,吴俣,蔡学智. 崩岗区四种草本植物根系抗拉特性及其与化学成分的关系. 亚热带水土保持. 2021(04): 9-15 .
    6. 李义强,伍红燕,宋桂龙,赵斌,李一为,夏宇,孙盛年,梁燕宁. 岩石边坡坡度对胡枝子和紫穗槐根系形态特征影响. 草原与草坪. 2020(02): 23-29 .
    7. 曹磊,马海天才. 不同草本植物根系力动力学及抗压力特征研究. 干旱区资源与环境. 2019(01): 164-170 .
    8. 李淑霞,刘亚斌,余冬梅,胡夏嵩,祁兆鑫. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究. 盐湖研究. 2019(01): 116-131 .
    9. 李瑞燊,刘静,王博,张欣,胡晶华,苏慧敏,白潞翼,王多民. 反复施加拉剪组合力对小叶锦鸡儿直根材料力学特性的影响. 水土保持学报. 2019(05): 121-125 .
    10. 马海天才. 不同草本植物根系的抗压动力学特征. 北方园艺. 2018(19): 71-77 .
    11. 王博,刘静,王晨嘉,张欣,刘嘉伟,李强,张强. 半干旱矿区3种灌木侧根分支处折力损伤后的自修复特性. 应用生态学报. 2018(11): 3541-3549 .
    12. 韦杰,李进林,史炳林. 紫色土耕地埂坎2种典型根——土复合体抗剪强度特征. 应用基础与工程科学学报. 2018(03): 483-492 .
    13. 刘昌义,胡夏嵩,赵玉娇,窦增宁. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究. 工程地质学报. 2017(01): 1-10 .
    14. 谷利茶,王国梁. 氮添加对油松幼苗不同径级细根碳水化合物含量的影响. 生态学杂志. 2017(08): 2184-2190 .
    15. 杨闻达,王桂尧,常婧美,张永杰. 主直根系拉拔力的室内试验研究. 中国水土保持科学. 2017(04): 111-116 .

    Other cited types(25)

Catalog

    Article views (2177) PDF downloads (106) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return