• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Wen, Pang Rongrong, Peng Jieying, Zhang Shuoxin, Yan Yan. Above-ground biomass distribution of Quercus aliena var. acuteserrata forest in Taibai Mountain[J]. Journal of Beijing Forestry University, 2019, 41(12): 69-76. DOI: 10.12171/j.1000-1522.20190440
Citation: Yu Wen, Pang Rongrong, Peng Jieying, Zhang Shuoxin, Yan Yan. Above-ground biomass distribution of Quercus aliena var. acuteserrata forest in Taibai Mountain[J]. Journal of Beijing Forestry University, 2019, 41(12): 69-76. DOI: 10.12171/j.1000-1522.20190440

Above-ground biomass distribution of Quercus aliena var. acuteserrata forest in Taibai Mountain

More Information
  • Received Date: November 14, 2019
  • Revised Date: November 28, 2019
  • Available Online: December 04, 2019
  • Published Date: November 30, 2019
  • ObjectivesBiomass estimation is critical for carbon stock assessment under global climate change. Taibai Mountain is the main peak in the Qinling Mountains. The forest biomass distribution in Taibai Mountain would provide basis for the dynamics of forest carbon sequestration during the vegetation restoration in the Qinling Mountain.
    MethodWe analyzed the differences of above-ground biomass in different habitats, sampling scales and DBH classes. The significance of difference was determined by ANOVA based on the field measurements of environmental factors and trees with DBH ≥ 1 cm in two 1.5 ha permanent plots in the primary and secondary Q. aliena var. acuteserrata forests.
    ResultThe results showed that the average above-ground biomass of the primary and secondary forest plots were 279.50 and 217.81 t/ha, respectively. Significant differences were found in above-ground biomass in different habitats. In the primary forest, the above-ground biomass was larger in the habitat with low total nitrogen, while the above-ground biomass in the secondary forest was larger in habitat with lower available phosphorus. Moreover, the above-ground biomass was larger in the habitat with a higher degree of concavity in the primary forest. At the same sampling scale, the above-ground biomass in the primary forest was larger than in the secondary forest. No significant difference in the above-ground biomass was found at different sampling scales in each forest. However, in the primary forest, the average above-ground biomass showed an unimodal trend along the increase of DBH class. And the above-ground biomass was the largest at the Ⅵ DBH class. The above-ground biomass increased along the increase of the DBH class in the secondary forest. The above-ground biomass in the primary forest was higher than that in the secondary forest at the Ⅳ ~ Ⅶ DBH classes, while smaller than that in the secondary forest at the Ⅸ DBH class.
    ConclusionTherefore, disturbance, habitat heterogeneity and DBH class can affect the above-ground biomass allocation in Q. aliena var. acuteserrata forests.
  • [1]
    Temesgen H, Ver Hoef J M. Evaluation of the spatial linear model, random forest and gradient nearest-neighbour methods for imputing potential productivity and biomass of the Pacific Northwest forests[J]. Forestry, 2015, 88(1): 131−142. doi: 10.1093/forestry/cpu036
    [2]
    Shen A, Wu C, Jiang B, et al. Spatiotemporal variations of aboveground biomass under different terrain conditions[J/OL]. Forests, 2018, 9(12), 778 [2019−10−12]. https://doi.org/10.3390/f9120778.
    [3]
    Jagodziński A M, Dyderski M K, Gęsikiewicz K, et al. Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland[J]. European Journal of Forest Research, 2019, 138: 673−683. doi: 10.1007/s10342-019-01197-z
    [4]
    Wasof S, Lenoir J, Hattab T, et al. Dominance of individual plant species is more important than diversity in explaining plant biomass in the forest understorey[J]. Journal of Vegetation Science, 2018, 29(3): 521−531. doi: 10.1111/jvs.12624
    [5]
    Mcewan R W, Lin Y C, Sun I F, et al. Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan[J]. Forest Ecology and Management, 2011, 262(9): 1817−1825. doi: 10.1016/j.foreco.2011.07.028
    [6]
    Liu D M, Lai J S, Muller-Landau H C, et al. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China[J/OL]. PLoS One, 2013, 8(5) [2019−10−25]. https://doi.org/10.1371/journal.pone.0048244.
    [7]
    郭屹立, 王斌, 向悟生, 等. 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应[J]. 生物多样性, 2016, 24(1):30−39. doi: 10.17520/biods.2015207

    Guo Y L, Wang B, Xiang W S, et al. Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China[J]. Biodiversity Science, 2016, 24(1): 30−39. doi: 10.17520/biods.2015207
    [8]
    Castilho C V D, Magnusson W E, Araújo R N O D, et al. Variation in aboveground tree live biomass in a central Amazonian forest: effects of soil and topography[J]. Forest Ecology and Management, 2006, 234(1−3): 85−96. doi: 10.1016/j.foreco.2006.06.024
    [9]
    Axmanová I, Zeleny D, Li C F, et al. Environmental factors influencing herb layer productivity in Central European oak forests: insights from soil and biomass analyses and a phytometer experiment[J]. Plant and Soil, 2011, 342(1−2): 183−194. doi: 10.1007/s11104-010-0683-9
    [10]
    Paoli G D, Curran L M, Slik J W F. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo[J]. Oecologia, 2008, 155(2): 287−299. doi: 10.1007/s00442-007-0906-9
    [11]
    Douxchamps S, Frossard E, Uehlinger N, et al. Identifying factors limiting legume biomass production in a heterogeneous on-farm environment[J]. Journal of Agriculture Science, 2012, 150(6): 675−690. doi: 10.1017/S0021859611000931
    [12]
    Liu J J, Tan Y H, Slik J W F. Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest[J]. Forest Ecology and Management, 2014, 330: 75−81. doi: 10.1016/j.foreco.2014.06.045
    [13]
    彭密. 胜山阔叶红松林乔木层生物量的空间变异及其模拟[D]. 哈尔滨: 东北林业大学, 2017.

    Peng M. Spatial variability and simulation of biomass of arbor layer of broad-leaved Korean pine forest in Shengshan[D]. Harbin: Northeast Forestry University, 2017.
    [14]
    Li Y, Dong S K, Liu S L, et al. Relationships between plant diversity and biomass production of alpine grasslands are dependent on the spatial scale and the dimension of biodiversity[J]. Ecological Engineering, 2019, 127: 375−382. doi: 10.1016/j.ecoleng.2018.12.015
    [15]
    Fleishman E, Noss R F, Noon B R. Utility and limitations of species richness metrics for conservation planning[J]. Ecological Indicators, 2006, 6(3): 543−553. doi: 10.1016/j.ecolind.2005.07.005
    [16]
    Vilà M, Carrillo-Gavilán A, Vayreda J, et al. Disentangling biodiversity and climatic determinants of wood production[J/OL]. PLoS One, 2013 [2019−10−19]. https://doi.org/10.1371/journal.pone.0053530.
    [17]
    Jucker T, Bouriaud O, Avacaritei D, et al. Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian forests[J]. Journal of Ecology, 2014, 102(5): 1202−1213. doi: 10.1111/1365-2745.12276
    [18]
    Wang W F, Lei X D, Ma Z H, et al. Positive relationship between aboveground carbon stocks and structural diversity in Spruce-dominated forest stands in New Brunswick, Canada[J]. Forest Science, 2011, 57(6): 506−515.
    [19]
    谭珊珊, 王忍忍, 龚筱羚, 等. 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例[J]. 生物多样性, 2017, 25(10):1054−1064.

    Tan S S, Wang R R, Gong X L, et al. Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama[J]. Biodiversity Science, 2017, 25(10): 1054−1064.
    [20]
    Hughes J B, Roughgarden J. Species diversity and biomass stability[J]. The American Naturalist, 2000, 155(5): 618−627. doi: 10.1086/303348
    [21]
    Grace J B, Anderson T M, Seabloom E W, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness[J]. Nature, 2016, 529: 390−393. doi: 10.1038/nature16524
    [22]
    Ali A, Yan E R, Chen H Y H, et al. Stand structural diversity rather than species diversity enhances\aboveground carbon storage in secondary subtropical forests in Eastern China[J]. Biogeosciences, 2016, 13(16): 4627−4635. doi: 10.5194/bg-13-4627-2016
    [23]
    Zhang Y, Chen H Y H, Taylor A R. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees[J]. Functional Ecology, 2017, 31: 419−426. doi: 10.1111/1365-2435.12699
    [24]
    Chave J, Andalo C, Brown S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests[J]. Oecologia, 2005, 145(1): 87−99. doi: 10.1007/s00442-005-0100-x
    [25]
    Xu J S, Chai Y F, Wang M, et al. Shifts in plant community assembly processes across growth forms along a habitat severity gradient: a test of the plant functional trait approach[J]. Front Plant Sci, 2018, 9: 180. doi: 10.3389/fpls.2018.00180
    [26]
    LY/T 2658—2016, 国家林业局. 立木生物量模型及碳计量参数—栎树[S]. 北京: 中国标准出版社, 2017.

    LY/T 2659—2016, State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Quercus[S]. Beijing: China Forestry Publishing House, 2017.
    [27]
    周国逸, 尹光彩, 唐旭利, 等. 中国森林生态系统碳储量: 生物量方程[M]. 北京: 科学出版社, 2018.

    Zhou G Y, Yin G C, Tang X L, et al. Carbon storage of forest ecosystem, biomass equation in China[M]. Beijing: Science Press, 2018.
    [28]
    Harms K E, Condit R, Hubbell S P, et al. Habitat associations of trees and shrubs in a 50 ha neotropical forest plot[J]. Journal of Ecology, 2001, 89(6): 947−959. doi: 10.1111/j.1365-2745.2001.00615.x
    [29]
    鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2007.

    Bao S D. Analysis of soil agrochemical[M]. Beijing: China Agriculture Press, 2007.
    [30]
    赖江山, 米湘成, 任海保, 等. 基于多元回归树的常绿阔叶林群丛数量分类:以古田山24公顷森林样地为例[J]. 植物生态学报, 2010, 34(7):761−769.

    Lai J S, Mi X C, Ren H B, et al. Numerical classification of associations in subtropical evergreen broad-leaved forest based on multivariate regression trees, a case study of 24 hm2 Gutianshan forest plot in China[J]. Chinese Journal of Plant Ecology, 2010, 34(7): 761−769.
    [31]
    Mascaro J, Asner G P, Muller-Landau H C, et al. Controls over aboveground forest carbon density on Barro Colorado Island, Panama[J]. Biogeosciences, 2011, 8(6): 1615−1629. doi: 10.5194/bg-8-1615-2011
    [32]
    Ryan M G, Stape J L, Binkley D, et al. Factors controlling Eucalyptus productivity: how water availability and stand structure alter production and carbon allocation[J]. Forest Ecology and Management, 2010, 259(9): 1695−1703. doi: 10.1016/j.foreco.2010.01.013
    [33]
    Toledo M, Poorter L, Pena-Claros M, et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance[J]. Journal of Ecology, 2011, 99(1): 254−264. doi: 10.1111/j.1365-2745.2010.01741.x
    [34]
    Yuan Z Q, Gazol A, Wang X G, et al. Pattern and dynamics of biomass stock in old growth forests: the role of habitat and tree size[J]. Acta Oecologica, 2016, 75: 15−23. doi: 10.1016/j.actao.2016.06.007
    [35]
    Pedro M S, Rammer W, Seidl R, et al. Disentangling the effects of compositional and structural diversity on forest productivity[J]. Journal of Vegetation Science, 2017, 28: 649−658. doi: 10.1111/jvs.12505
    [36]
    Stephenson N L, Das A J, Condit R, et al. Rate of tree carbon accumulation increases continuously with tree size[J]. Nature, 2014, 507: 90−93. doi: 10.1038/nature12914
    [37]
    Pach M, Podlaski R. Tree diameter structural diversity in Central European forests with Abies alba and Fagus sylvatica: managed versus unmanaged forest stands[J]. Ecological Research, 2015, 30(2): 367−384. doi: 10.1007/s11284-014-1232-4
    [38]
    Slik J W F, Paoli G, McGuire K, et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics[J]. Global Ecology & Biogeography, 2014, 229(12): 1261−1271.
  • Cited by

    Periodical cited type(18)

    1. 黄鑫,徐国祺,马耀辉. 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂. 北京林业大学学报. 2025(01): 116-125 . 本站查看
    2. 张景朋,邵闯,蒋明亮. 高效液相色谱法测定防腐材中嘧菌酯含量的方法研究. 木材科学与技术. 2025(01): 64-70 .
    3. 吴喆虹,王文志,罗玲卓,袁超峰,苏勇,朱万泽. 贡嘎山健康与腐朽峨眉冷杉径向生长分异及其气候响应. 生态学报. 2024(23): 10897-10905 .
    4. 储炜,徐明,许琪,李婷,崔兆彦. 加速腐朽环境下重组竹力学及耐腐性能研究. 建筑科学与工程学报. 2023(03): 30-39 .
    5. 宋丽琴,宋太泽,祝席文,程芳超,孙建平. 木材花斑真菌对木材的影响及应用研究进展. 应用与环境生物学报. 2022(03): 805-812 .
    6. 谢启芳,张保壮,张利朋,苗壮. 自然干裂木柱受力性能试验与退化模型研究. 建筑结构学报. 2022(12): 210-222 .
    7. 常旭东,金光泽. 地形和土壤因子对红松活立木腐朽的影响. 林业科学. 2022(11): 71-82 .
    8. 张景朋,蒋明亮,马星霞,张斌. 甲氧基丙烯酸酯类制剂的木材防腐性能研究. 北京林业大学学报. 2021(03): 131-137 . 本站查看
    9. 王玉娇,彭尧,曹金珍. 褐腐初期南方松木材微观形貌与化学成分分析. 北京林业大学学报. 2021(03): 138-144 . 本站查看
    10. 王湘茹,曾飞扬,吕嘉宇,乔宇欣,闫丽. 硅烷偶联剂对水杨酸/二氧化硅微胶囊改性杨木耐腐性的影响. 林产工业. 2021(05): 54-59 .
    11. 贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性. 林业科学. 2021(05): 165-175 .
    12. 赵艳,张泽宇,金宇乔,庞久寅,孙耀星. 木材表面仿制类玫瑰花超疏水结构研究. 林产工业. 2020(12): 32-34+39 .
    13. 赵博识,于志明,漆楚生,唐睿琳,张扬. 木材微生物变色与调控研究现状和展望. 林产工业. 2019(08): 1-4 .
    14. 郭宇,李超,李英洁,王哲,姚利宏. 木材细胞壁与木材力学性能及水分特性之间关系研究进展. 林产工业. 2019(08): 14-18 .
    15. 徐华东,狄亚楠,邢涛,徐群. 褐腐对白杨木材固碳量的影响规律及机理. 中南林业科技大学学报. 2019(11): 104-109 .
    16. 孙恒,冀晓东,赵红华,杨茂林,丛旭. 人工林刺槐木材物理力学性质研究. 北京林业大学学报. 2018(07): 104-112 . 本站查看
    17. 孙海燕,苏明垒,王玉荣. 木材细胞壁力学性能与细胞壁组分和构造的相关性研究. 林产工业. 2018(10): 22-27 .
    18. 陈继超,姜维娜,曹文静,周徐亮,周晓燕,徐莉. 杨木纤维/Si-B复合材料制备及其防腐性能研究. 南京林业大学学报(自然科学版). 2018(05): 206-210 .

    Other cited types(18)

Catalog

    Article views (1954) PDF downloads (98) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return