• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Fu Yiwen, Tian Dashuan, Niu Shuli, Zhao Kentian. Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow[J]. Journal of Beijing Forestry University, 2020, 42(5): 115-123. DOI: 10.12171/j.1000-1522.20190469
Citation: Fu Yiwen, Tian Dashuan, Niu Shuli, Zhao Kentian. Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow[J]. Journal of Beijing Forestry University, 2020, 42(5): 115-123. DOI: 10.12171/j.1000-1522.20190469

Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow

More Information
  • Received Date: December 17, 2019
  • Revised Date: February 09, 2020
  • Available Online: March 05, 2020
  • Published Date: May 24, 2020
  •     Objective   Global change has substantially changed soil nitrogen (N), phosphorus (P) and water availability, which further impacts plant growth and physiological processes. However, so far few studies have been conducted to analyze the interaction effects of soil N, P and water on plant growth and physiological traits, especially for alpine meadow plants. This study aims to reveal the impacts of N addition, P addition, drought and their interactions on plant growth, leaf N and P content and N:P ratios in dominant species of alpine meadows, providing scientific evidence for grassland management.
        Method   Based on an experiment of N addition (10 g/(m2· year)), P addition (10 g/(m2· year)) and drought (50% rainfall reduction) in an alpine meadow of northwestern Sichuan, we measured aboveground biomass, leaf N, P content and their ratio in Elymus nutans, Deschampsia caespitosa and Anemone rivularis. Then we analyzed the influence of different treatments and their interactions on plant biomass and leaf nutrient.
        Result   For plant growth, N addition significantly increased plant biomass of three species, but the impacts of P addition, drought, and the interactions among different treatments were not significant. For leaf nutrient, N addition significantly enhanced leaf N content and N:P ratio of three species, and P addition also promoted leaf P content but reduced N:P ratio. Drought raised leaf N content of E. nutans and D. caespitosa, but had no significant effect on leaf P content and N:P ratio. The interaction of N addition and drought promoted leaf N content and N:P ratio of E. nutans and D. caespitosa. Nevertheless, the interaction of N and P addition was not significant for leaf nutrient of all species.
        Conclusion   This study indicates that alpine species have quite different responses of plant growth versus nutrient traits to nutrient enrichment, drought and their interactions. N input mainly facilitates plant growth, but the complex impacts of soil N, P, drought and their interactions all affect plant nutrient and stoichiometric balance. These results imply that more future studies are needed to detect the mechanisms underlying alpine plant physiological responses to the interactions of various global changes.
  • [1]
    Stevens C J, Dise N B, Mountford J O, et al. Impact of nitrogen deposition on the species richness of grasslands[J]. Science, 2004, 303: 1876−1879. doi: 10.1126/science.1094678
    [2]
    Clark C M, Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008, 451: 712−717. doi: 10.1038/nature06503
    [3]
    Knapp A K, Beier C, Briske D D, et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems[J]. Bioscience, 2008, 58(9): 811−821. doi: 10.1641/B580908
    [4]
    Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135−1142. doi: 10.1111/j.1461-0248.2007.01113.x
    [5]
    Sardans J, Rivas-Ubach A, Peñuelas J. The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(1): 33−47. doi: 10.1016/j.ppees.2011.08.002
    [6]
    Cox P M, Betts R, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408: 184−187. doi: 10.1038/35041539
    [7]
    Wright I J, Westoby M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species[J]. Functional Ecology, 2003, 17(1): 10−19. doi: 10.1046/j.1365-2435.2003.00694.x
    [8]
    Craine J M, Tilman D, Wedin D, et al. Functional traits, productivity and effects on nitrogen cycling of 33 grassland species[J]. Functional Ecology, 2002, 16(5): 563−574.
    [9]
    Cernusak L A, Winter K, Turner B L. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls[J]. New Phytologist, 2010, 185(3): 770−779. doi: 10.1111/j.1469-8137.2009.03106.x
    [10]
    Matzek V, Vitousek P M. N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis[J]. Ecology Letters, 2009, 12(8): 765−771. doi: 10.1111/j.1461-0248.2009.01310.x
    [11]
    Niklas K J, Owens T, Reich P B, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth[J]. Ecology Letters, 2005, 8(6): 636−642. doi: 10.1111/j.1461-0248.2005.00759.x
    [12]
    Baldwin D S, Mitchell A M. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis[J]. Regulated Rivers: Research & Management, 2000, 16(5): 457−467.
    [13]
    Heidari M, Karami V. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress[J]. Journal of the Saudi Society of Agricultural Sciences, 2014, 13(1): 9−13. doi: 10.1016/j.jssas.2012.12.002
    [14]
    Ali Q, Haider M Z, Iftikhar W, et al. Drought tolerance potential of Vigna mungo L. lines as deciphered by modulated growth, antioxidant defense, and nutrient acquisition patterns[J]. Brazilian Journal of Botany, 2016, 39(3): 801−812. doi: 10.1007/s40415-016-0282-y
    [15]
    Koerselman W, Meuleman A F M. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441−1450. doi: 10.2307/2404783
    [16]
    Aerts R, Chapin Ⅲ F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 1999, 30: 1−67.
    [17]
    Stevens M H H, Shirk R, Steiner C E. Water and fertilizer have opposite effects on plant species richness in a mesic early successional habitat[J]. Plant Ecology, 2006, 183(1): 27−34. doi: 10.1007/s11258-005-9003-5
    [18]
    Sterner R W, Elser J J. Ecological stoichiometry : the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2002.
    [19]
    Gǜsewell S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164: 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
    [20]
    宾振钧, 王静静, 张文鹏, 等. 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响[J]. 植物生态学报, 2014, 38(3):231−237. doi: 10.3724/SP.J.1258.2014.00020

    Bin Z J, Wang J J, Zhang W P, et al. Effects of N addition on ecological stoichiometric characteristics in six dominant plant species of alpine meadow on the Qinghai-Xizang Plateau, China[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 231−237. doi: 10.3724/SP.J.1258.2014.00020
    [21]
    王长庭, 王根绪, 刘伟, 等. 施肥梯度对高寒草甸群落结构、功能和土壤质量的影响[J]. 生态学报, 2013, 33(10):3103−3113. doi: 10.5846/stxb201202200232

    Wang C T, Wang G X, Liu W, et al. Effects of fertilization gradients on plant community structure and soil characteristics in alpine meadow[J]. Acta Ecologica Sinica, 2013, 33(10): 3103−3113. doi: 10.5846/stxb201202200232
    [22]
    Dong J, Cui X, Wang S, et al. Changes in biomass and quality of alpine steppe in response to N & P fertilization in the Tibetan Plateau[J/OL]. PLoS One, 2016, 11(5): e0156146 [2019−04−14]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156146.
    [23]
    Wang J, Wang Z, Zhang X, et al. Response of Kobresia pygmaea and Stipa purpurea grassland communities in northern Tibet to nitrogen and phosphate addition[J]. Mountain Research and Development, 2015, 35(1): 78−87. doi: 10.1659/MRD-JOURNAL-D-11-00104.1
    [24]
    Yang Y, Gao Y, Wang S, et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland[J]. The ISME Journal, 2014, 8(2): 430. doi: 10.1038/ismej.2013.146
    [25]
    Wang C, Long R, Wang Q, et al. Fertilization and litter effects on the functional group biomass, species diversity of plants, microbial biomass, and enzyme activity of two alpine meadow communities[J]. Plant and Soil, 2010, 331(1−2): 377−389. doi: 10.1007/s11104-009-0259-8
    [26]
    Tang L, Han W, Chen Y, et al. Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China[J]. Journal of Plant Ecology, 2013, 6(5): 408−417. doi: 10.1093/jpe/rtt013
    [27]
    Lü X T, Han X G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China[J]. Plant and Soil, 2010, 327(1−2): 481−491. doi: 10.1007/s11104-009-0078-y
    [28]
    Zhao G, Shi P, Wu J, et al. Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau[J]. Ecology and Evolution, 2017, 7(18): 7201−7212. doi: 10.1002/ece3.3283
    [29]
    张方月. 高寒草甸生态系统碳循环对降雨梯度的响应及机理研究[D]. 北京: 中国科学院地理科学与资源研究所, 2018.

    Zhang F Y. Responses of ecosystem carbon cycle to precipitation gradient in an alpine meadow [D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, 2018.
    [30]
    Borer E T, Harpole W S, Adler P B, et al. Finding generality in ecology: a model for globally distributed experiments[J]. Methods in Ecology and Evolution, 2014, 5(1): 65−73. doi: 10.1111/2041-210X.12125
    [31]
    Smith M, Sala O, Phillips R. Drought-Net: a global network to assess terrestrial ecosystem sensitivity to drought[EB/OL]. [2019−03−14]. http://asm2015.lternet.edu/working-groups/drought-net-global-network-assess-terrestrial-ecosystem-sensitivity-drought.
    [32]
    Güsewell S. Responses of wetland graminoids to the relative supply of nitrogen and phosphorus[J]. Plant Ecology, 2005, 176(1): 35−55. doi: 10.1007/s11258-004-0010-8
    [33]
    Chapin Ⅲ F S, Shaver G R, Giblin A E, et al. Responses of arctic tundra to experimental and observed changes in climate[J]. Ecology, 1995, 76(3): 694−711. doi: 10.2307/1939337
    [34]
    Shaver G R, Bret-Harte M S, Jones M H, et al. Species composition interacts with fertilizer to control long-term change in tundra productivity[J]. Ecology, 2001, 82(11): 3163−3181. doi: 10.1890/0012-9658(2001)082[3163:SCIWFT]2.0.CO;2
    [35]
    Mack M C, Schuur E A G, Bret-Harte M S, et al. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization[J]. Nature, 2004, 431: 440−443. doi: 10.1038/nature02887
    [36]
    DeMalach N, Zaady E, Kadmon R. Contrasting effects of water and nutrient additions on grassland communities: a global meta-analysis[J]. Global Ecology and Biogeography, 2017, 26(8): 983−992. doi: 10.1111/geb.12603
    [37]
    Niklaus P A, Leadley P W, Stöcklin J, et al. Nutrient relations in calcareous grassland under elevated CO2[J]. Oecologia, 1998, 116(1−2): 67−75. doi: 10.1007/s004420050564
    [38]
    Han W, Luo Y, Du G. Effects of clipping on diversity and above-ground biomass associated with soil fertility on an alpine meadow in the eastern region of the Qinghai-Tibetan Plateau[J]. New Zealand Journal of Agricultural Research, 2007, 50(3): 361−368. doi: 10.1080/00288230709510304
    [39]
    Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought:from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3): 239−264. doi: 10.1071/FP02076
    [40]
    Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau[J]. Ecology Letters, 2004, 7(12): 1170−1179. doi: 10.1111/j.1461-0248.2004.00677.x
    [41]
    Bedia J, Busqué J. Productivity, grazing utilization, forage quality and primary production controls of species-rich alpine grasslands with N ardus stricta in northern S pain[J]. Grass and Forage Science, 2013, 68(2): 297−312. doi: 10.1111/j.1365-2494.2012.00903.x
    [42]
    Li H, Zhang F, Li Y, et al. Thirty-year variations of above-ground net primary production and precipitation-use efficiency of an alpine meadow in the north-eastern Qinghai-Tibetan Plateau[J]. Grass and Forage Science, 2016, 71(2): 208−218. doi: 10.1111/gfs.12165
    [43]
    He J S, Wang L, Flynn D F B, et al. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes[J]. Oecologia, 2008, 155(2): 301−330.
    [44]
    Henry H A L, Cleland E E, Field C B, et al. Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland[J]. Oecologia, 2005, 142(3): 465−473. doi: 10.1007/s00442-004-1713-1
    [45]
    Xia J, Wan S. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytologist, 2008, 179(2): 428−439. doi: 10.1111/j.1469-8137.2008.02488.x
    [46]
    Li J, Yang C, Liu X, et al. Inconsistent stoichiometry response of grasses and forbs to nitrogen and water additions in an alpine meadow of the Qinghai-Tibet Plateau[J]. Agriculture, Ecosystems & Environment, 2019, 279: 178−186.
    [47]
    Liu P, Huang J, Han X, et al. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China[J]. Applied Soil Ecology, 2006, 34(2−3): 266−275. doi: 10.1016/j.apsoil.2005.12.009
    [48]
    Wang C, Wan S, Xing X, et al. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in northern China[J]. Soil Biology and Biochemistry, 2006, 38(5): 1101−1110. doi: 10.1016/j.soilbio.2005.09.009
    [49]
    范丙全, 胡春芳. 灌溉施肥对壤质潮土硝态氮淋溶的影响[J]. 植物营养与肥料学报, 1998, 4(1):16−21. doi: 10.3321/j.issn:1008-505X.1998.01.003

    Fan B Q, Hu C F. Effects of irrigation and fertilization on nitrate leaching in loamy fluvo-aquic soil[J]. Plant Nutrition and Fertilizer Science, 1998, 4(1): 16−21. doi: 10.3321/j.issn:1008-505X.1998.01.003
    [50]
    Scholefield D, Tyson K C, Garwood E A, et al. Nitrate leaching from grazed grassland lysimeters: effects of fertilizer input, field drainage, age of sward and patterns of weather[J]. Journal of Soil Science, 1993, 44(4): 601−613. doi: 10.1111/j.1365-2389.1993.tb02325.x
    [51]
    Ding K, Zhong L, Xin X P, et al. Effect of grazing on the abundance of functional genes associated with N cycling in three types of grassland in Inner Mongolia[J]. Journal of Soils and Sediments, 2015, 15(3): 683−693. doi: 10.1007/s11368-014-1016-z
    [52]
    Liu H, Mi Z, Lin L, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production[J]. Proceedings of the National Academy of Sciences, 2018, 115(16): 4051−4056. doi: 10.1073/pnas.1700299114
    [53]
    Luo X, Mazer S J, Guo H, et al. Nitrogen: phosphorous supply ratio and allometry in five alpine plant species[J]. Ecology and Evolution, 2016, 6(24): 8881−8892. doi: 10.1002/ece3.2587
    [54]
    Zhang J, Yan X, Su F, et al. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow[J]. Science of the Total Environment, 2018, 625: 440−448. doi: 10.1016/j.scitotenv.2017.12.292
    [55]
    Mamolos A P, Vasilikos C V, Veresoglou D S. Vegetation in contrasting soil water sites of upland herbaceous grasslands and N: P ratios as indicators of nutrient limitation[J]. Plant and Soil, 2005, 270(1): 355−369. doi: 10.1007/s11104-004-1793-z
    [56]
    Rejmánková E, Macek P, Epps K. Wetland ecosystem changes after three years of phosphorus addition[J]. Wetlands, 2008, 28(4): 914−927. doi: 10.1672/07-150.1
  • Cited by

    Periodical cited type(10)

    1. 邹玉珍,曾庆伟,武红敢,郑仁高. 变色立木卫星影像样本特征分析及应用. 中国森林病虫. 2023(03): 1-8 .
    2. 焦全军,郑焰锋,黄文江,张兵,张鹤译,史宜梦,吴发云,付安民. 陆地生态系统碳监测卫星松材线虫病变色木识别指数研究. 林业资源管理. 2023(04): 123-131 .
    3. 曾庆伟,武红敢,张静,杨雅菲. 碳卫星在变色立木遥感监测中的应用潜力分析. 卫星应用. 2023(11): 20-25 .
    4. 李炜浩,张硕,刘梓航,苏旻,高浩然,刘善军. 基于光谱指数法的本溪市域红叶提取方法研究. 测绘与空间地理信息. 2022(04): 47-50 .
    5. 戴丽,周席华,罗治建,武红敢,陈亮. 湖北松材线虫病卫星遥感监管技术初探. 湖北林业科技. 2022(04): 60-64 .
    6. 孙红,曾庆伟. “高分七号”数据在松材线虫病松树样木监测中的应用. 林业科技通讯. 2022(09): 27-29 .
    7. 陶欢,李存军,程成,蒋丽雅,胡海棠. 松材线虫病变色松树遥感监测研究进展. 林业科学研究. 2020(03): 172-183 .
    8. 陶欢,李存军,谢春春,周静平,淮贺举,蒋丽雅,李凤涛. 基于HSV阈值法的无人机影像变色松树识别. 南京林业大学学报(自然科学版). 2019(03): 99-106 .
    9. 武红敢,牟晓伟,杨清钰,王成波. 无人机遥感技术在重庆市沙坪坝区松材线虫病监测中的应用. 林业资源管理. 2019(02): 109-115 .
    10. 武红敢,王成波,常原飞. 变色立木的无人机遥感监测技术. 中国森林病虫. 2019(04): 29-32+37 .

    Other cited types(4)

Catalog

    Article views (2846) PDF downloads (163) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return