• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yuan Wenwen, Zhang Jinsong, Meng Ping, Tong Xiaojuan, Zhou Yu, Li Pengxing. Determination of the average period of CH4 flux in a mixed plantation in Xiaolangdi Area of the Yellow River based on eddy covariance method[J]. Journal of Beijing Forestry University, 2020, 42(10): 55-61. DOI: 10.12171/j.1000-1522.20200003
Citation: Yuan Wenwen, Zhang Jinsong, Meng Ping, Tong Xiaojuan, Zhou Yu, Li Pengxing. Determination of the average period of CH4 flux in a mixed plantation in Xiaolangdi Area of the Yellow River based on eddy covariance method[J]. Journal of Beijing Forestry University, 2020, 42(10): 55-61. DOI: 10.12171/j.1000-1522.20200003

Determination of the average period of CH4 flux in a mixed plantation in Xiaolangdi Area of the Yellow River based on eddy covariance method

More Information
  • Received Date: January 15, 2020
  • Revised Date: March 10, 2020
  • Available Online: October 08, 2020
  • Published Date: October 24, 2020
  •   Objective  The eddy covariance technique provides a useful tool to directly measure CH4 exchange between the vegetation and atmosphere. The eddy covariance data normally need to be regulated based on the actual situation of the study area for its application. An inappropriate average period can lead to the inaccurate estimation on CH4 flux. Therefore, some of the regulations were selected to obtain the suitable sampling frequency and average period.
      Method  In this paper, the impact of average period on CH4 flux calculation had been analyzed in a mixed plantation in the Xiaolangdi Area of the Yellow River from July to August of 2016. CH4 flux was calculated in different average periods (15−720 min). CH4 flux obtained in different periods was analyzed, and the calculation of CH4 flux in different average periods was compared with that of 30 min average period. The influences of average period on the calculation of CH4 flux based on the original data (sampling frequency was 10 Hz) were examined. In addition, the Ogive function was applied to determine the low-frequency contribution to CH4 flux.
      Result  The diurnal variations of CH4 flux were different in the average period of 15, 60, 120, 240, 360 and 720 min. Large differences occurred at noon and small differences occurred in the morning or evening. When the average period was shorter than 120 min, CH4 flux had same diurnal variation characteristics with 30 min value, and increased with the increase of the average period. The calculation of CH4 flux was estimated significantly inaccurately when the average period was longer than 240 min. The Ogive function increased when the averaging period was less than 15 min, and the Ogive function became gradually stable when the period was 60 min.
      Conclusion  Different average periods have different influences in calculating CH4 flux. In this study, the optimal average period should be 60 min during the long-term observation, whereas the average period should be 15 min to obtain accurate CH4 flux at the daily time scale.
  • [1]
    IPCC. Climate change 2013: the physical science basic. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[C]. Cambridge: Cambridge University, 2013.
    [2]
    高升华, 张旭东, 汤玉喜, 等. 滩地人工林幼林不同时间尺度CH4通量变化特征: 基于涡度相关闭路系统的研究[J]. 生态学报, 2016, 36(18):5912−5921.

    Gao S H, Zhang X D, Tang Y X, et al. Dynamics and regulation of CH4 fluxes in a poplar plantation on a floodplain[J]. Acta Ecologica Sinica, 2016, 36(18): 5912−5921.
    [3]
    Mikkelsen T N, Bruhn D, Ambus P, et al. Is methane released from the forest canopy?[J]. Iforest Biogeosciences and Forestry, 2011, 4(1): 200−204.
    [4]
    Querino C A S, Smeets C J P P, Vigano I, et al. Methane flux, vertical gradient and mixing ratio measurements in a tropical forest[J]. Atmospheric Chemistry and Physics, 2011, 11(15): 7943−7953. doi: 10.5194/acp-11-7943-2011
    [5]
    Megonigal J P, Guenther A B. Methane emissions from upland forest soils and vegetation[J]. Tree Physiology, 2008, 28: 491−498. doi: 10.1093/treephys/28.4.491
    [6]
    姚玉刚, 张一平, 于贵瑞, 等. 热带森林植被冠层CO2储存项的估算方法研究[J]. 北京林业大学学报, 2011, 33(1):23−29.

    Yao Y G, Zhang Y P, Yu G R, et al. Estimation of CO2 storage flux between forest and atmosphere in a tropical forest[J]. Journal of Beijing Forestry University, 2011, 33(1): 23−29.
    [7]
    郭晓楠, 查天山, 贾昕, 等. 典型沙生灌木生态系统凝结水量估算[J]. 北京林业大学学报, 2016, 38(10):80−87.

    Guo X N, Zha T S, Jia X, et al. Estimation of dewfall amount in a typical desert shrub ecosystem[J]. Journal of Beijing Forestry University, 2016, 38(10): 80−87.
    [8]
    母艳梅, 李俊, 同小娟, 等. 基于Penman-Monteith模型和Shuttleworth-Wallace模型对太行山南麓人工林蒸散的模拟[J]. 北京林业大学学报, 2017, 39(11):35−44.

    Mu Y M, Li J, Tong X J, et al. Evapotranspiration simulated by Penman-Monteith and Shuttleworth-Wallace models over a mixed plantation in the southern foot of the Taihang Mountain, northern China[J]. Journal of Beijing Forestry University, 2017, 39(11): 35−44.
    [9]
    王珊, 查天山, 贾昕, 等. 毛乌素沙地油蒿群落冠层导度及影响因素[J]. 北京林业大学学报, 2017, 39(3):65−73.

    Wang S, Zha T S, Jia X, et al. Temporal variation and controlling factors of canopy conductance in Artemisia ordosica community[J]. Journal of Beijing Forestry University, 2017, 39(3): 65−73.
    [10]
    李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2通量的影响[J]. 北京林业大学学报, 2015, 37(8):31−39.

    Li X M, Zhang Q L. Impact of climate factors on CO2 flux characteristics in a Larix gmelinii forest ecosystem[J]. Journal of Beijing Forestry University, 2015, 37(8): 31−39.
    [11]
    Baldocchi D D. How eddy covariance flux measurements have contributed to our understanding of global change biology[J]. Global Change Biology, 2019, 26(1): 1−19.
    [12]
    Massman W J. A simple method for estimating frequency response corrections for eddy covariance systems[J]. Agricultural and Forest Meteorology, 2000, 104: 185−198. doi: 10.1016/S0168-1923(00)00164-7.
    [13]
    Kristensen L, Mann J, Oncley S P, et al. How close is close enough when measuring scalar fluxes with displaced sensors[J]. Journal of Atmospheric and Oceanic Technology, 1996, 14(4): 814−821.
    [14]
    Moore C J. Frequency response corrections for eddy correlation systems[J]. Boundary-Layer Meteorology, 1986, 37: 17−35. doi: 10.1007/BF00122754.
    [15]
    Bosveld F C, Beljaars A C M. The impact of sampling rate on eddy-covariance flux estimates[J]. Agricultural and Forest Meteorology, 2001, 109: 39−45. doi: 10.1016/S0168-1923(01)00257-X.
    [16]
    Lenschow D H, Raupach M R. The attenuation of fluctuations in scalar concentrations through sampling tubes[J]. Journal of Geophysical Research, 1991, 96(D8): 15259−15268. doi: 10.1029/91JD01437.
    [17]
    Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapor transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(447): 85−100. doi: 10.1002/qj.49710644707.
    [18]
    Lee X. On micrometeorological observations of surface-air exchange over tall vegetation[J]. Agricultural and Forest Meteorology, 1998, 91: 39−49. doi: 10.1016/S0168-1923(98)00071-9.
    [19]
    Schmid H P. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective[J]. Agricultural and Forest Meteorology, 2002, 113: 159−183. doi: 10.1016/S0168-1923(02)00107-7.
    [20]
    Finnigan J J, Clement R, Malhi Y, et al. A re-evaluation of long-term flux measurement techniques(Part I): averaging and coordinate rotation[J]. Boundary-Layer Meteorology, 2003, 107: 1−48. doi: 10.1023/A:1021554900225.
    [21]
    Kaimal J C, Finnigan J J. Atmospheric boundary layer flows: their structure and measurement (Vii)[M]. New York: Oxford University Press, 1994: 255−261.
    [22]
    Kristensen L, Fitzjarrald D R. The effect of line averaging on scalar flux measurements with a sonic anemometer near the surface[J]. Journal of Atmospheric and Oceanic Technology, 1984, 1(2): 138−146. doi: 10.1175/1520-0426(1984)001<0138:TEOLAO>2.0.CO;2
    [23]
    Lenschow D H, Mann J, Kristensen L, et al. How long is long enough when measuring fluxes and other turbulence statistics[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11: 661−673. doi: 10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2
    [24]
    王春林, 周国逸, 王旭, 等. 复杂地形条件下涡度相关法通量测定修正方法分析[J]. 中国农业气象, 2007, 28(3):233−240.

    Wang C L, Zhou G Y, Wang X, et al. Analysis of correction method on Eddy flux measurement over complex terrain[J]. Chinese Journal of Agrometeorology, 2007, 28(3): 233−240.
    [25]
    Sakai R K, Fitzjarrald D R, Moore K E. Importance of low-frequency contribution to eddy fluxes observed over rough surfaces[J]. Journal of Applied Meteorology, 2001, 40: 2178−2190. doi: 10.1175/1520-0450(2001)040<2178:IOLFCT>2.0.CO;2.
    [26]
    Moncrie J, Clement R, Finnigan J, et al. Handbook of micrometeorology[M]. London: Kluwer Academic Publishers, 2004: 7−31.
    [27]
    孙晓敏, 朱治林, 许金萍, 等. 涡度相关测定中平均周期参数的确定及其影响分析[J]. 中国科学D辑: 地球科学, 2004, 34(增刊2):30−36.

    Sun X M, Zhu Z L, Xu J P, et al. Determination of the averaging period of eddy covariance measurement and its influences on the calculation of fluxes[J]. Science in China Series D: Earth Sciences, 2004, 34(Suppl.2): 30−36.
    [28]
    张佩, 袁国富, 朱治林. 荒漠河岸林涡度相关通量测定中平均时间的确定及其对通量计算的影响[J]. 干旱区地理, 2013, 36(3):401−407.

    Zhang P, Yuan G F, Zhu Z L. Determination of the averaging period of eddy covariance measurement and its influences on the calculation of fluxes in desert riparian forest[J]. Arid Land Geography, 2013, 36(3): 401−407.
    [29]
    Tong X J, Meng P, Zhang J S, et al. Ecosystem carbon exchange over a warm-temperate mixed plantation in the lithoid hilly area of the North China[J]. Atmospheric Environment, 2012, 49(3): 257−267.
    [30]
    Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(3): 512−526. doi: 10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
    [31]
    Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms[J]. Boundary-Layer Meteorology, 2001, 99: 127−150. doi: 10.1023/A:1018966204465
    [32]
    Ibrom A, Dellwik E, Larsen S E, et al. On the use of the Webb-Pearman-Leuning theory for closed-path eddy correlation measurements[J]. Tellus B: Chemical and Physical Meteorology, 2007, 59: 937−946. doi: 10.1111/j.1600-0889.2007.00311.x
    [33]
    Ibrom A, Dellwik E, Flvbjerg H, et al. Strong low-pass filtering effects on water vapor flux measurements with closed-path eddy correlation system[J]. Agricultural and Forest Meteorology, 2007, 147: 140−156. doi: 10.1016/j.agrformet.2007.07.007
    [34]
    Mauder M, Foken T. Documentaation and instruction manual of the eddy covariance software package TK2[Z]. Bayreuth: Bayreuth University, 2004: 1614−1616.
    [35]
    Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange[J]. Agricultural and Forest Meteorology, 2001, 107(8): 43−69.
    [36]
    Berger B W, Davis K J, Yi C, et al. Long-term carbon dioxide fluxes from a very tall tower in a northern forest: flux measurement methodology[J]. Atmospheric and Ocean Technology, 2001, 18: 529−542. doi: 10.1175/1520-0426(2001)018<0529:LTCDFF>2.0.CO;2.
    [37]
    倪攀, 金昌杰, 王安志, 等. 科尔沁草地不同大气稳定度下湍流特征谱分析[J]. 生态学杂志, 2009, 28(12):2495−2502.

    Ni P, Jin C J, Wang A Z, et al. Spectral analysis of turbulence characteristics under different atmospheric stablility regimes in Horqin grassland[J]. Chinese Journal of Ecology, 2009, 28(12): 2495−2502.
    [38]
    李佳, 陈岩, 秦淑静, 等. 涡度相关系统不同平均周期对干旱区玉米水热通量的影响[J]. 灌溉排水学报, 2018, 37(9):69−72.

    Li J, Chen Y, Qin S J, et al. Effects of different average periods in eddy covariance on calculation of heat and water fluxes in maize field in arid region[J]. Journal of Irrigation and Drainage, 2018, 37(9): 69−72.
    [39]
    Foken T, Wichura B. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and Forest Meteorology, 1996, 78(1/2): 83−105.
    [40]
    Kroon P S, Hensen A, Jonker H J J, et al. Uncertainties in eddy covariance flux measurements assessed from CH4 and N2O observations[J]. Agricultural and Forest Meteorology, 2010, 150(6): 806−816.
    [41]
    吕少宁, 文军, 张宇, 等. 不同平均时间对LOPEX10资料涡动相关湍流通量计算结果影响的探讨[J]. 高原气象, 2012, 31(6):1530−1538.

    Lü S N, Wen J, Zhang Y, et al. Influence of the different averaging period on computing the turbulent fluxes using LOPEX10 data[J]. Plateau Meteorology, 2012, 31(6): 1530−1538.
    [42]
    Feng J, Zhang B, Wei Z, et al. Effects of averaging period on energy fluxes and the energy-balance ratio as measured with an eddy-covariance system[J]. Boundary Layer Meteorology, 2017, 165(3): 545−551. doi: 10.1007/s10546-017-0284-8.
    [43]
    宋涛, 修天阳, 孙扬, 等. 城市复杂环境下涡度相关通量观测的适用性分析[J]. 环境科学学报, 2014, 34(5):1089−1098.

    Song T, Xiu T Y, Sun Y, et al. Applicability of eddy covariance technique to the measurement of turbulent fluxes in complex urban context[J]. Acta Scientiae Circumstantiae, 2014, 34(5): 1089−1098.
  • Related Articles

    [1]He Mingxia, Huang Xueman, You Yeming, Wang Bo, Tong Hui, Yang Xinran, Ming Angang, Zhao Lijun, Luan Junwei. Regulatory mechanism of root-mycelial-microorganism interactions on soil phosphorus transformation of Pinus massoniana plantation under mixed renovation[J]. Journal of Beijing Forestry University, 2025, 47(3): 83-94. DOI: 10.12171/j.1000-1522.20240322
    [2]Xu Depeng, Xu Fangze, Sun Hailong, Chen Meiqing, Xiang Wei. Comparison of methods for dividing developmental stages of natural mixed forest stands[J]. Journal of Beijing Forestry University, 2024, 46(7): 139-152. DOI: 10.12171/j.1000-1522.20230174
    [3]Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. DOI: 10.12171/j.1000-1522.20210497
    [4]Lou Minghua, Zhang Huiru, Lei Xiangdong, Bai Chao, Yang Tonghui. Relationship model between stand mean height and mean DBH for natural Quercus spp. broadleaved mixed stands[J]. Journal of Beijing Forestry University, 2020, 42(9): 37-50. DOI: 10.12171/j.1000-1522.20190463
    [5]He Mengying, Dong Lihu, Li Fengri. Crown width prediction models for Larix olgensis and Fraxinus mandshurica mixed plantations[J]. Journal of Beijing Forestry University, 2020, 42(7): 23-32. DOI: 10.12171/j.1000-1522.20190250
    [6]Wu Xiaoyong, Yang Hua, Lü Yanjie, Wang Quanjun, Sun Quan. Analysis of structure characteristics in Picea asperata-Betula platyphylla mixed forests[J]. Journal of Beijing Forestry University, 2019, 41(1): 64-72. DOI: 10.13332/j.1000-1522.20180211
    [7]LU Jun, ZHANG Hui-ru, LEI Xiang-dong, YANG Ying-jun, WANG Quan-jun. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains.[J]. Journal of Beijing Forestry University, 2015, 37(11): 10-25. DOI: 10.13332/j.1000-1522.20140429
    [8]CHIU Chih-ming, SU Sheng-hsin, CHUNG Chih-hsin, TANG Sheng-lin, LIN Chien-yu. The management toward an uneven-aged mixed forest in a row-thinned Cryptomeria plantation[J]. Journal of Beijing Forestry University, 2015, 37(3): 44-54. DOI: 10.13332/j.1000-1522.20140317
    [9]WANG Xu, ZHOU Guo-yi, SUN Ge, ZHANG De-qiang, YAN Jun-hua, ZHAO Hui. Characteristics of radiation flux of coniferous and broadleaved mixed forest in low subtropical China[J]. Journal of Beijing Forestry University, 2006, 28(5): 28-34.
    [10]LI Ji-yue, ZHAI Hong-bo, WEI Xiao-xia. Rainfall and its redistribution of Pinus tabulaeformis and Quercus variabilis mixed forests[J]. Journal of Beijing Forestry University, 2006, 28(3): 154-157.
  • Cited by

    Periodical cited type(1)

    1. 武成辉,周婧,马锦钰,霍冠峰. 非二氧化碳温室气体排放量化方法研究进展. 广东化工. 2024(20): 103-106 .

    Other cited types(1)

Catalog

    Article views (1271) PDF downloads (58) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return