• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Lianqiang, Yang Huixia, Ding Guoquan, Li Chun. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 47-55. DOI: 10.12171/j.1000-1522.20200009
Citation: Li Lianqiang, Yang Huixia, Ding Guoquan, Li Chun. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 47-55. DOI: 10.12171/j.1000-1522.20200009

Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China

More Information
  • Received Date: January 06, 2020
  • Revised Date: May 13, 2020
  • Available Online: November 06, 2020
  • Published Date: December 13, 2020
  •   Objective  Precipitation redistribution is an important hydrological process in forest ecosystems. Analyzing the precipitation redistribution characteristics of Pinus densiflora and Quercus mongolica can provide a reference for the analysis of ecological hydrological parameters and model establishment of typical forest stands in eastern Liaoning Province of northeastern China.
      Method  Taking the Pinus densiflora and Quercus mongolica forests in the Xianrendong Nature Reserve as the survey and observation objects, the selection of precipitation outside the forest (POF), throughfall (TF), stem flow (SF) and canopy interception (IF) were used as indicators. The regression analysis method was used to establish the equations of POF and various indicators, and the precipitation characteristics and their changes of the two forests were analyzed.
      Result  (1) In the Pinus densiflora forest, TF, IF and SF were 388.5, 215.3 and 66.5 mm, accounting for 57.96%, 32.12% and 9.92% of the POF, respectively. In the Quercus mongolica forest, TF, IF, and SF were 421.7, 119.0 and 55.5 mm, accounting for 70.73%, 19.96% and 9.31% of the POF, respectively. (2) At low intensity precipitation, the initial lag time of Pinus densiflora and Quercus mongolica forest was about 1 h, while for medium and high intensity rainfall, the lag time was shorter, significantly less than 1 h; and the canopy interception time of the Pinus densiflora forest was longer, the hysteresis was stronger, and the interception effect was better. (3) The rainfall outside the forest was significantly and linearly positively correlated with the penetration rainfall and stem flow (P < 0.001). The minimum rainfall producing TF and SF by Pinus densiflora forest and Quercus mongolica forest was 4.2 , 5.8 mm and 2.0, 2.5 mm. respectively. (4) The canopy interception of Pinus densiflora and Quercus mongolica showed a significant quadratic function relationship with rainfall (P < 0.001). Canopy interception occurs simultaneously with rain outside the forest. When the rainfall was greater than 90.0 and 70 mm, the canopy interception of Pinus densiflora and Quercus mongolica tended to be stable at about 10 and 7 mm, respectively. (5) The rainfall outside the forest had a very significant negative correlation with canopy interception rate (P < 0.001), showing a power function relationship. When the rainfall outside the forest was greater than 90.0 and 70 mm, the canopy interception rates of Pinus densiflora and Quercus mongolica forest tended to be stable, decreasing to about 20% and 10%, respectively.
      Conclusion  In the process of precipitation redistribution, the SF and IF of the Pinus densiflora forest is greater than Quercus mongolica forest, while the TF of Pinus densiflora forest is smaller than Quercus mongolica forest. Redistribution of Pinus densiflora forest is stronger. There is a significant delay in TF in the forest, the lag time is affected by rainfall intensity and stand type, and the lag time of Pinus densiflora forest is greater than Quercus mongolica forest. The POF is significantly positively correlated with SF, TF and IF, and it has a linear function relationship with tree SF and TF. It has a quadratic function relationship with the IF. There is a significant negative correlation between the POF and canopy interception rate, and it is a power function relationship.
  • [1]
    Crockford R H, Richardson D P. Partitioning of rainfall into throughfall, stemflow and interception effect of forest type, ground cover and climate[J]. Hydrological Processes, 2000, 14(16−17): 2903−2920. doi: 10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6.
    [2]
    陈书军, 陈存根, 曹田健, 等. 降雨特征及小气候对秦岭油松林降雨再分配的影响[J]. 水科学进展, 2013, 24(4):513−521.

    Chen S J, Chen C G, Cao T J, et al. Effects of rainfall characteristics and micrometeorology on rainfall redistribution within Chinese red pine forest[J]. Advances in Water Science, 2013, 24(4): 513−521.
    [3]
    Owens M K, Lyons R K, Alejandro C L. Rainfall partitioning within semiarid juniper communities: effects of event size and canopy cover[J]. Hydrological Processes, 2006, 20(15): 3179−3189. doi: 10.1002/hyp.6326.
    [4]
    Pérez-Suárez M, Arredondo-Moreno J T, Huber-Sannwald E, et al. Forest structure, species traits and rain characteristics influences on horizontal and vertical rainfall partitioning in a semiarid pine-oak forest from Central Mexico[J]. Ecohydrology, 2014, 7(2): 532−543. doi: 10.1002/eco.1372.
    [5]
    孙忠林, 王传宽, 王兴昌, 等. 两种温带落叶阔叶林降雨再分配格局及其影响因子[J]. 生态学报, 2014, 34(14):3978−3986.

    Sun Z L, Wang C K, Wang X C, et al. Rainfall redistribution patterns and their influencing factors of two temperate deciduous forests[J]. Acta Ecologica Sinica, 2014, 34(14): 3978−3986.
    [6]
    王云霓, 王晓江, 高孝威, 等. 内蒙古大青山白茬子沟小流域典型森林植被的冠层降水再分配特征[J]. 内蒙古林业科技, 2017, 43(4):6−9. doi: 10.3969/j.issn.1007-4066.2017.04.002

    Wang Y N, Wang X J, Gao X W, et al. Canopy precipitation redistribution of typical forest vegetation in Baichazigou Watershed, Daqing Mountains of Inner Mongolia[J]. Journal of Inner Mongolia Forestry Science & Technology, 2017, 43(4): 6−9. doi: 10.3969/j.issn.1007-4066.2017.04.002
    [7]
    陈书军, 陈存根, 邹伯才, 等. 秦岭天然次生油松林冠层降雨再分配特征及延滞效应[J]. 生态学报, 2012, 32(4):1142−1150. doi: 10.5846/stxb201012271854.

    Chen S J, Chen C G, Zou B C, et al. Time lag effects and rainfall redistribution traits of the canopy of natural secondary Pinus tabulaeformison precipitation in the Qinling Mountains, China[J]. Acta Ecological Sinica, 2012, 32(4): 1142−1150. doi: 10.5846/stxb201012271854.
    [8]
    Carlyle-Moses D E. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community[J]. Journal of Arid Environments, 2004, 58(2): 181−202. doi: 10.1016/S0140-1963(03)00125-3.
    [9]
    鲜靖苹, 张家洋, 胡海波. 森林冠层水文研究进展[J]. 西北林学院学报, 2014, 29(3):96−104. doi: 10.3969/j.issn.1001-7461.2014.03.20.

    Xian J P, Zhang J Y, Hu H B. Forest canopy hydrology: a review[J]. Journal of Northwest Forestry University, 2014, 29(3): 96−104. doi: 10.3969/j.issn.1001-7461.2014.03.20.
    [10]
    Guevara E A, González S E, Véliz C C, et al. Rainfall interception and distribution patterns of gross precipitation around an isolated Ficus benjamina tree in an urban area[J]. Journal of Hydrology, 2007, 333(2−4): 532−541. doi: 10.1016/j.jhydrol.2006.09.017
    [11]
    李佳, 饶良懿, 鲁绍伟, 等. 北京密云油松与刺槐林降雨再分配过程研究[J]. 广东农业科学, 2012, 39(12):169−174. doi: 10.3969/j.issn.1004-874X.2012.12.053.

    Li J, Rao L Y, Lu S W, et al. Pine and locust forest on rainfall redistribution in Miyun of Beijing[J]. Guangdong Agricultural Sciences, 2012, 39(12): 169−174. doi: 10.3969/j.issn.1004-874X.2012.12.053.
    [12]
    高儒学, 高华端, 孙泉忠, 等. 关岭县蚂蝗田小流域降雨年内分配特征研究[J]. 水土保持研究, 2017, 24(2):152−155.

    Gao R X, Gao H D, Sun Q Z, et al. Study on annual distribution characteristics of rainfall in mahuangtian catchment of Guanling County[J]. Research of Soil and Water Conservation, 2017, 24(2): 152−155.
    [13]
    Staelens J, Schrijver A D, Verheyen K, et al. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology[J]. Hydrological Processes, 2008, 22(1): 33−45. doi: 10.1002/hyp.6610.
    [14]
    宗桦. 森林乔木冠层雨水再分配特征及机制研究综述[J]. 世界林业研究, 2019, 32(1):31−38.

    Zong H. A review of characteristics and mechanisms of rainfall interception and redistribution in forest canopy[J]. World Forestry Research, 2019, 32(1): 31−38.
    [15]
    Aydin M, Sen S G, Celik S. Throughfall, stemflow, and interception characteristics of coniferous forest ecosystems in the western black sea region of Turkey (Daday example)[J/OL]. Environmental Monitoring and Assessment, 2018, 190(5): 316 (2018−04−30)[2019−03−18]. https://doi.org/10.1007/s10661-018-6657-8.
    [16]
    赵明扬, 孙长忠, 康磊. 降雨再分配的回归模型差异性分析:以黄土高原半干旱区油松人工林为例[J]. 中南林业科技大学学报, 2013, 33(5):85−90.

    Zhao M Y, Sun C Z, Kang L. Difference analysis of rainfall redistribution of Pinus tabulaeformis artificial forests in Loess Plateau[J]. Journal of Central South University of Forestry & Technology, 2013, 33(5): 85−90.
    [17]
    Fathizadeh O, Attarod P, Pypker T, et al. Seasonal variability of rainfall interception and canopy storage capacity under individual oak (Quercus brantii) trees of western Iran[J]. Journal of Agricultural Science and Technology, 2013, 15(1): 175−188.
    [18]
    江淼华, 吕茂奎, 胥超, 等. 亚热带米槠次生林和杉木人工林林冠截留特征比较[J]. 水土保持学报, 2017, 31(1):119−124, 129.

    Jiang M H, Lü M K, Xu C, et al. Study on the canopy interception of secondary forest of Castanopsis carlesii and Chinese fir plantation in subtropical China[J]. Journal of Soil and Water Conservation, 2017, 31(1): 119−124, 129.
    [19]
    邱治军, 周光益, 吴仲民, 等. 粤北杨东山常绿阔叶次生林林冠截留特征[J]. 林业科学, 2011, 47(6):157−161. doi: 10.11707/j.1001-7488.20110623.

    Qiu Z J. Zhou G Y, Wu Z M, et al. Characteristics of the canopy interception in an evergreen broad-leaved secondary forest in Yangdongshan, North Guangdong[J]. Scientia Silvae Sinicae, 2011, 47(6): 157−161. doi: 10.11707/j.1001-7488.20110623.
    [20]
    梁文俊, 丁国栋, 臧荫桐, 等. 华北土石山区油松林对降雨再分配的影响[J]. 水土保持研究, 2012, 19(4):77−80.

    Liang W J, Ding G D, Zang Y T, et al. Study on effect of Pinus tabulaeformis plantation on rainfall redistribution processes in the mountainous area of North China[J]. Research of Soil and Water Conservation, 2012, 19(4): 77−80.
    [21]
    艾长江, 高光耀, 袁川, 等. 陕北黄土高原柠条灌丛穿透雨特征与影响因素[J]. 生态学报, 2018, 38(17):6063−6073.

    Ai C J, Gao G Y, Yuan C, et al. Throughfall and its influential factors of a typical xerophytic shrub (Caragana korshinskii) in northern Shaanxi in the Loess Plateau of China[J]. Acta Ecologica Sinica, 2018, 38(17): 6063−6073.
    [22]
    张梅. 辽东半岛仙人洞自然保护区植物区系多样性分析[J]. 西北植物学报, 2014, 34(8):1693−1698. doi: 10.7606/j.issn.1000-4025.2014.08.1693

    Zhang M. Plant floristic diversity in xianrendong natural reserve from Liaodong Peninsula[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(8): 1693−1698. doi: 10.7606/j.issn.1000-4025.2014.08.1693
    [23]
    郭凤, 陈建刚, 杨军, 等. 植草沟对北京市道路地表径流的调控效应[J]. 水土保持通报, 2015, 35(3):182−187.

    Guo F, Chen J G, Yang J, et al. Regulatory effect of grassed swales on road surface runoff in Beijing City[J]. Bulletin of Soil & Water Conservation, 2015, 35(3): 182−187.
    [24]
    杨会侠, 温亮, 李淳, 等. 辽东山区人工红松林降雨截留分配效应[J]. 吉林林业科技, 2017, 46(2):12−15.

    Yang H X, Wen L, Li C, et al. The rainfall retention distribution effect of artificial Pinus koraiensis forest in Liaodong mountain area[J]. Journal of Jilin Forestry Science and Technology, 2017, 46(2): 12−15.
    [25]
    冯亚琦, 郭娜, 蔡体久, 等. 蒙古栎林对大气降雨的再分配规律[J]. 森林工程, 2017, 33(5):24−28, 34.

    Feng Y Q, Guo N, Cai T J, et al. Rainfall redistribution of mongolian oak plantation in Harbin[J]. Forest Engineering, 2017, 33(5): 24−28, 34.
    [26]
    石磊, 盛后财, 满秀玲, 等. 兴安落叶松林降雨再分配及其穿透雨的空间异质性[J]. 南京林业大学学报(自然科学版), 2017, 41(2):90−96.

    Shi L, Sheng H C, Man X L, et al. Rainfall redistribution and the spatial heterogeneity of throughfall in Larix gmelinii forest, northeast China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(2): 90−96.
    [27]
    董玲玲, 康峰峰, 韩海荣, 等. 辽河源3种林分降雨再分配特征及其影响因素[J]. 水土保持学报, 2018, 32(4):147−152.

    Dong L L, Kang F F, Han H S, et al. Traitsand influencing factors of rainfall redistribution in three types of forest in Liaoheyuan[J]. Journal of Soil and Water Conservation, 2018, 32(4): 147−152.
    [28]
    陈丽华, 杨新兵, 鲁绍伟, 等. 华北土石山区油松人工林耗水分配规律[J]. 北京林业大学学报, 2008, 30(9):182−187.

    Chen L H, Yang X B, Lu S W, et al. Distribution of water consumption of Pinus tabulaeformis plantation in rocky mountain areas in northern China[J]. Journal of Beijing Forestry University, 2008, 30(9): 182−187.
    [29]
    刘玉杰, 满秀玲, 盛后财. 大兴安岭北部兴安落叶松林穿透雨延滞效应[J]. 应用生态学报, 2015, 26(11):3285−3292.

    Liu Y J, Man X L, Sheng H C. Time lag effects of throughfall in natural Larix gmelinii forest in the north of Great Xing ’an Mountains, China[J]. Chinese Journal of Applied Ecology, 2015, 26(11): 3285−3292.
    [30]
    周秋文, 马龙生, 颜红, 等. 贵州省喀斯特阔叶林降雨截留分配特征[J]. 水土保持通报, 2016, 36(6):321−325.

    Zhou Q W, Ma L S, Yan H, et al. Distribution characteristics of rainfall interception by broadleaved forest in typical karst area of Guizhou Province[J]. Bulletin of Soil and Water Conservation, 2016, 36(6): 321−325.
    [31]
    Holwerda F, Bruijnzeel L A, Muñoz-Villers L E, et al. Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico[J]. Journal of Hydrology, 2010, 384(1−2): 84−96. doi: 10.1016/j.jhydrol.2010.01.012.
    [32]
    Levia D F, Frost E E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems[J]. Journal of Hydrology (Amsterdam), 2003, 274(1−4): 1−29. doi: 10.1016/S0022-1694(02)00399-2.
    [33]
    王艳萍, 王力, 卫三平. Gash模型在黄土区人工刺槐林冠降雨截留研究中的应用[J]. 生态学报, 2012, 32(17):5445−5453. doi: 10.5846/stxb201203190374.

    Wang Y P, Wang L, Wei S P. Modeling canopy rainfall interception of a replanted Robinia pseudoacacia forest in the Loess Plateau[J]. Acta Ecologica Sinica, 2012, 32(17): 5445−5453. doi: 10.5846/stxb201203190374.
    [34]
    Macinnis-Ng C M O, Flores E E, Henry M, et al. Throughfall and stemflow vary seasonally in different land-use types in a lower montane tropical region of Panama[J]. Hydrological Processes, 2014, 26(4): 2174−2184.
    [35]
    万艳芳, 刘贤德, 王顺利, 等. 祁连山青海云杉林冠降雨再分配特征及影响因素[J]. 水土保持学报, 2016, 30(5):224−229.

    Wan Y F, Liu X D, Wang S L, et al. Rainfall canopy partitioning and its influencing factors of Picea crassifolia forest in the Qilian Mountains[J]. Journal of Soil and Water Conservation, 2016, 30(5): 224−229.
    [36]
    张宁, 郭宾良, 张国强, 等. 沿坝地区天然次生林对降雨再分配的影响[J]. 水土保持研究, 2015, 22(6):104−107, 114.

    Zhang N, Guo B L , Zhang G Q, et al. Study on effect of natural secondary forest on rainfall redistribution processes along the dam area[J]. Research of Soil and Water Conservation, 2015, 22(6): 104−107, 114.
    [37]
    何常清, 薛建辉, 吴永波, 等. 岷江上游亚高山川滇高山栎林的降雨再分配[J]. 应用生态学报, 2008, 19(9):1871−1876.

    He C Q, Xue J H, Wu Y B, et al. Rainfall redistribution in subalpine Quercus aquifolioides forest in upper reaches of Minjiang River[J]. Chinese Journal of Applied Ecology, 2008, 19(9): 1871−1876.
    [38]
    温远光, 刘世荣. 我国主要森林生态系统类型降水截留规律的数量分析[J]. 林业科学, 1995, 31(4):289−298.

    Wen Y G, Liu S R. Quantitative analysis of the characteristics of rainfall interception of main forest ecosystems China[J]. Scientia Silvae Sinicae, 1995, 31(4): 289−298.
    [39]
    任世奇, 项东云, 肖文发, 等. 广西南宁桉树人工林降雨再分配特征[J]. 生态学杂志, 2017, 36(6):1473−1480.

    Ren S Q, Xiang D Y, Xiao W F, et al. Rainfall redistribution of eucalypt plantation in Nanning, Guangxi, China[J]. Chinese Journal of Ecology, 2017, 36(6): 1473−1480.
  • Related Articles

    [1]Liu Fangni, Yin Hao, Liu Zhiruo. Impact of greening around residential buildings on winter sunlight in Beijing[J]. Journal of Beijing Forestry University, 2024, 46(2): 114-122. DOI: 10.12171/j.1000-1522.20230056
    [2]Wang-Ren Zhongyuan, Zhang Shouhong, Zhang Sunxun, Yan Jing, Yang Hang, Wang Kai, Zhang Chengyu, Wei Liangyi. Effects of plant roots on the regulating function of green roof runoff[J]. Journal of Beijing Forestry University, 2023, 45(6): 108-116. DOI: 10.12171/j.1000-1522.20220274
    [3]Du Tiantian, Sun Xiangyang, Li Suyan, Zhou Wei, Zheng Yi, Fan Zhihui. Effects of landscaping waste mulching on soil fertility of urban green space[J]. Journal of Beijing Forestry University, 2021, 43(10): 110-117. DOI: 10.12171/j.1000-1522.20200402
    [4]Feng Xiaojie, Liu Guoliang, Zhang Wei, Sun Xiangyang, Li Suyan, Yan Subo. Effects of green waste compost on soil organic carbon fractions[J]. Journal of Beijing Forestry University, 2021, 43(7): 120-127. DOI: 10.12171/j.1000-1522.20210035
    [5]Zhang Deshun, Chen-Lu Qiyao, Xue Kaihua, Wang Zhen, Yao Chiyuan, Chen Yijia. Determination and analysis of the relationship between microclimate elements and greening structures in the city streets of Shanghai: taking Xuhui District and Yangpu District as examples[J]. Journal of Beijing Forestry University, 2021, 43(4): 124-131. DOI: 10.12171/j.1000-1522.20170359
    [6]Zhao Na, Li Shaoning, Xu Xiaotian, Wang Weina, Lu Shaowei. Water use efficiency and its influencing factors of typical greening tree species in Beijing region[J]. Journal of Beijing Forestry University, 2021, 43(3): 44-54. DOI: 10.12171/j.1000-1522.20200293
    [7]XIU Yu, WU Guo-dong, CHEN De-zhong, ZHAO Xiao-qing, TANG Wen-si, WANG Hua-fang. Propagation and afforestation techniques of tree peonies for greening and seed oil production[J]. Journal of Beijing Forestry University, 2017, 39(1): 112-118. DOI: 10.13332/j.1000-1522.20160045
    [8]LIU Li-na, XU Cheng-yang, DUAN Yong-hong, ZHOU Rui-zhi, DAI Xiang-yang. Root morphology of three greening conifer species in Beijing[J]. Journal of Beijing Forestry University, 2008, 30(1): 34-39.
    [9]SUI Jin-ling, ZHANG Xiang, HU De-fu, LI Kai, WANG Min-zhong, FU Rui-hai. Relationship between bird communities and environment factors at green belts in the urban area of Beijing[J]. Journal of Beijing Forestry University, 2007, 29(5): 121-126. DOI: 10.13332/j.1000-1522.2007.05.022
    [10]RAO Liang-yi, ZHU Jin-zhao, BI Hua-xing. Hydrological effects of forest litters and soil in the Simian Mountain of Chongqing City.[J]. Journal of Beijing Forestry University, 2005, 27(1): 33-37.
  • Cited by

    Periodical cited type(9)

    1. 张薇,陆晓敏. 海盐乡土树种在城市园林中的应用调查与推广建议. 安徽农学通报. 2023(02): 79-82+96 .
    2. 孙连群,何林洁,黄雪雯. 黔南州乡土植物资源在都匀市旅游景观中的运用. 黔南民族师范学院学报. 2023(03): 106-112+120 .
    3. 饶显龙,何田恬,王冰彦,刘华红,李上善,丁洲,黎家宏,李珏. 浙江舟山群岛彩化植物资源调查及其园林应用评价. 北京林业大学学报. 2022(09): 127-136 . 本站查看
    4. 简兴,鲍嵚,王雪娟. 屋顶绿化研究现状与展望. 世界林业研究. 2021(06): 14-19 .
    5. 刘乐乐,朱亚灵,许宏刚,周德旗,汉梅兰. 兰州市城市绿地木本植物多样性研究. 草原与草坪. 2020(01): 56-62 .
    6. 李荣喜,许雯,黄敏,张怡君,董斌. 广州市高架桥桥荫植物绿化现状及对策. 现代园艺. 2019(10): 148-150 .
    7. 柳泽鑫,吴悦宏,肖泽鑫,陈翠蓉. 潮汕地区居住区乡土植物资源及其应用分析. 防护林科技. 2018(06): 40-42+45 .
    8. 李峰,管志涛. 从建设海绵城市看濮阳市消落区植物景观配置. 濮阳职业技术学院学报. 2018(03): 110-112 .
    9. 李成璋,黄永艺. 海绵城市建设理念下江门主城区园林乡土植物的利用研究. 绿色科技. 2018(21): 49-54 .

    Other cited types(11)

Catalog

    Article views (1166) PDF downloads (67) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return