• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Mingxia, Wang Yajun, Wang Fengqin, Gao Bo, Shan Yanlong, Yin Sainan, Ji Xin, Shu Lifu. Effects of different heating times and humus particle sizes on vertical combustion of forest underground fire based on simulated spot burning[J]. Journal of Beijing Forestry University, 2021, 43(3): 66-72. DOI: 10.12171/j.1000-1522.20200047
Citation: Wang Mingxia, Wang Yajun, Wang Fengqin, Gao Bo, Shan Yanlong, Yin Sainan, Ji Xin, Shu Lifu. Effects of different heating times and humus particle sizes on vertical combustion of forest underground fire based on simulated spot burning[J]. Journal of Beijing Forestry University, 2021, 43(3): 66-72. DOI: 10.12171/j.1000-1522.20200047

Effects of different heating times and humus particle sizes on vertical combustion of forest underground fire based on simulated spot burning

More Information
  • Received Date: March 03, 2020
  • Revised Date: March 27, 2020
  • Available Online: March 01, 2021
  • Published Date: April 15, 2021
  •   Objective  The combustion of underground fire is a slow, flameless, long duration smoldering, which does great harm to forest. Daxing’anling region is a frequent area of forest underground fire in northeastern China. This paper aims to study the effects of different heating times and humus particle sizes on the vertical combustion of underground fires, aiming to provide a reference for the prevention, monitoring and suppression of underground fires in the area.
      Method  Taking the typical forest type in the Daxing’an Mountains, i.e. Larix gmelinii forest as the research object, according to the indoor control simulation of scorching experiment data, SPSS was used to perform two-factor analysis of variance, and the Origin software was used to draw. The effects of three heating times and five humus particle sizes on the spreading speed and the highest temperature at different depths during the vertical combustion of underground fire were studied.
      Result  During the vertical burning process of the forest underground fire, the temperature of the highest burning at a depth of 3 cm was only affected by the heating time and the difference was significant (P < 0.05), but the effects of humus particle size on the difference were not significant (P > 0.05). The highest temperature of combustion at a depth of 6 cm was affected by the heating time (P < 0.05) and the particle size of humus (P < 0.05). When the depth was greater than 6 cm, the maximum combustion temperature was only affected by the humus particle size and the difference was significant (P < 0.05). The spread rate during the vertical combustion of forest underground fires was only affected by the humus particle size. There were significant differences between the spreading speeds (P < 0.05).
      Conclusion  The highest temperature of underground forest fires burning at 3 cm and 6 cm depth rises with the increase of heating time, and the burning temperature is the highest when heated for 2 h. When the vertical combustion depth is 9−21 cm, the humus particle size is 40 mesh, the burning temperature is the highest. Among the effects of humus particle size on the spread speed of forest underground fires, the spread speed of humus particle size 20 mesh is the fastest; when the humus particle size is 60 mesh, it is the criticality in the process of underground fire combustion. The highest combustion temperature and spread speed are lower.
  • [1]
    Samira O, Laure P, Hugo A, et al. Burning potential of fire refuges in the boreal mixedwood forest[J]. Forests, 2016, 7(12): 2−17.
    [2]
    Suresh B K V, Roy A, Prasad P R. Forest fire risk modeling in Uttarakhand Himalaya using TERRA satellite datasets[J]. European Journal of Remote Sensing, 2016, 49: 389−395.
    [3]
    Turetsky M R, Benscoter B, Page S, et al. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 2014, 8(1): 11−14.
    [4]
    Rein G, Cleaver N, Ashton C, et al. The severity of smouldering peat fires and damage to the forest soil[J]. Catena, 2008, 74(3): 304−309. doi: 10.1016/j.catena.2008.05.008
    [5]
    Davies G M, Gray A, Rein G, et al. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland[J]. Forest Ecology and Management, 2013, 308(7): 169−177.
    [6]
    Huang X Y, Rein G. Upward-and-downward spread of smoldering peat fire[J]. Proceedings of the Combustion Institute, 2018, 21: 9−17.
    [7]
    Reardon J, Hungerford R, Ryan K. Factors affecting sustained smouldering in organic soils from pocosin and pond pine woodland wetlands[J]. International Journal of Wildland Fire, 2007, 16(1): 107−118. doi: 10.1071/WF06005
    [8]
    唐抒圆, 李华, 单延龙, 等. 森林地下火特征及防控措施[J]. 世界林业研究, 2019, 32(3):42−48.

    Tang S Y, Li H, Shan Y L, et al. Characteristics and control of underground forest fire[J]. World Forestry Research, 2019, 32(3): 42−48.
    [9]
    何诚, 舒立福, 张思玉, 等. 大兴安岭森林草原地下火阴燃特征研究[J]. 西南林业大学学报(自然科学), 2020, 40(2):103−110.

    He C, Shu L F, Zhang S Y, et al. Research on underground fire smouldering characteristics of forest steppe in Great Xing’an Mountains in Heilongjiang Province[J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(2): 103−110.
    [10]
    尹赛男, 单延龙, 宋光辉, 等. 不同粒径腐殖质火垂直燃烧特征研究[J]. 中南林业科技大学学报, 2019, 39(10):95−101.

    Yin S N, Shan Y L, Song G H, et al. Study on vertical combustion characteristics of humus fire under different particle sizes[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 95−101.
    [11]
    辛颖, 王新然, 李禹洁. 森林腐殖质阴燃向明火转变实验研究[J]. 消防科学与技术, 2018, 37(9):1162−1166. doi: 10.3969/j.issn.1009-0029.2018.09.002

    Xin Y, Wang X R, Li Y J. Experimental study on the transition of forest humus from smoldering to open flame[J]. Fire Science and Technology, 2018, 37(9): 1162−1166. doi: 10.3969/j.issn.1009-0029.2018.09.002
    [12]
    Anderson J A R. Observations on climatic damage in peat swamp forest in Sarawak[J]. Commonwealth Forestry Review, 1964, 43(2): 145−158.
    [13]
    舒立福, 王明玉, 田晓瑞, 等. 大兴安岭林区地下火形成火环境研究[J]. 自然灾害学报, 2003, 12(4):62−67. doi: 10.3969/j.issn.1004-4574.2003.04.011

    Shu L F, Wang M Y, Tian X R, et al. Fire environment mechanism of ground fire formation in Daxing’an Mountains[J]. Journal of Natural Dusasters, 2003, 12(4): 62−67. doi: 10.3969/j.issn.1004-4574.2003.04.011
    [14]
    Hadden R M, Rein G, Belcher C M. Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2547−2553. doi: 10.1016/j.proci.2012.05.060
    [15]
    单延龙. 大兴安岭森林可燃物的研究[D]. 哈尔滨: 东北林业大学, 2003.

    Shan Y L. Study on froest fuel of Daxing’an Mountains in northeast China[D]. Harbin: Northeast Forestry University, 2003.
    [16]
    张运林, 孙萍, 胡海清, 等. 风速对蒙古栎阔叶床层两个重要失水时间的影响[J]. 中南林业科技大学学报, 2018, 38(4):65−71.

    Zhang Y L, Sun P, Hu H Q, et al. Effects of wind speed on two key drying times of fuel beds composed of Mongolian oak leaves[J]. Journal of Central South University of Forestry & Technology, 2018, 38(4): 65−71.
    [17]
    张恒, 金森, 张运林, 等. 气象法预测盘古林场可燃物含水率的外推精度[J]. 中南林业科技大学学报, 2016, 36(12):61−67.

    Zhang H, Jin S, Zhang Y L, et al. Meteorological elements regression method is used to predict Pangu Forest Farm extrapolation accuracy analysis of fuel moisture content[J]. Journal of Central South University of Forestry & Technology, 2016, 36(12): 61−67.
    [18]
    满子源, 胡海清, 张运林, 等. 帽儿山地区典型地表可燃物含水率动态变化及预测模型[J]. 北京林业大学学报, 2019, 41(3):49−57.

    Man Z Y, Hu H Q, Zhang Y L, et al. Dynamic change and prediction model of moisture content of surface fuel in Maoer Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 49−57.
    [19]
    孙向阳. 土壤学[M]. 北京: 中国林业出版社, 2010.

    Sun X Y. Soil science[M]. Beijing: China Forestry Publishing House, 2010.
    [20]
    张吉利, 邸雪颖. 地下火及阴燃研究进展[J]. 温带林业研究, 2018, 1(3):19−22. doi: 10.3969/j.issn.2096-4900.2018.03.004

    Zhang J L, Di X Y. The study of ground fire and smoldering: a review[J]. Journal of Temperate Forestry Research, 2018, 1(3): 19−22. doi: 10.3969/j.issn.2096-4900.2018.03.004
    [21]
    辛颖, 历美岑. 粒径对森林腐殖质阴燃传播的影响[J]. 消防科学与技术, 2017, 36(8):1037−1040. doi: 10.3969/j.issn.1009-0029.2017.08.001

    Xin Y, Li M C. The influence of particle size on smoldering combustion of forest humus[J]. Fire Science and Technology, 2017, 36(8): 1037−1040. doi: 10.3969/j.issn.1009-0029.2017.08.001
    [22]
    者香, 赵伟涛, 陈海翔, 等. 泥炭粒径对阴燃蔓延速率影响的实验研究[J]. 火灾科学, 2014, 23(3):129−135. doi: 10.3969/j.issn.1004-5309.2014.03.01

    Zhe X, Zhao W T, Chen H X, et al. Influence of particle size on the spreading rate of peat smoldering: an experimental study[J]. Fire Safety Science, 2014, 23(3): 129−135. doi: 10.3969/j.issn.1004-5309.2014.03.01
    [23]
    He F, Yi W, Li Y, et al. Effects of fuel properties on the natural downward smoldering of piled biomass powder: experimental investigation[J]. Biomass and Bioenergy, 2014, 67: 288−296. doi: 10.1016/j.biombioe.2014.05.003
    [24]
    李小川, 李兴伟, 王振师, 等. 广东森林火灾的火源特点分析[J]. 中南林业科技大学学报, 2008, 28(1):89−92. doi: 10.3969/j.issn.1673-923X.2008.01.025

    Li X C, Li X W, Wang Z S, et al. Analysis of fire source characteristics of Guangdong forest fires[J]. Journal of Central South University of Forestry & Technology, 2008, 28(1): 89−92. doi: 10.3969/j.issn.1673-923X.2008.01.025
    [25]
    Ohlemiller T J. Modeling of smoldering combustion propagation[J]. Progress in Energy & Combustion Science, 1985, 11(4): 277−310.
    [26]
    者香. 泥炭粒径、含水率和无机物含量对阴燃蔓延速率影响的实验研究[D]. 合肥: 中国科学技术大学, 2015.

    Zhe X. Experimental study on the influence of particle size, moisture content and mineral content on the spreading rate of peat smoldering[D]. Hefei: University of Science and Technology of China, 2015.
  • Related Articles

    [1]Dai Rui, Duan Shuaishuai, Xiao Shikui, Wei Zhipeng, Lü Shufang, Shi Guoan, Wu Jiang, Fan Bingyou. Screening of internal reference genes of cut flowers of Paeonia lactiflora and expression analysis of key genes of ethylene biosynthesis[J]. Journal of Beijing Forestry University, 2025, 47(1): 106-115. DOI: 10.12171/j.1000-1522.20240054
    [2]Liu Jiaming, Zhao Jian, Zhang Jianzhong, Zhao Dong. Cutting constitutive equation and its parameter measurement of oil tree peony stem[J]. Journal of Beijing Forestry University, 2020, 42(11): 138-144. DOI: 10.12171/j.1000-1522.20200229
    [3]Zhao Xiaozhi, Gao Li, Jia Guixia. Effects of light treatment on cutting quality of Juniperus chinensis ‘Plumosa Aurea’[J]. Journal of Beijing Forestry University, 2020, 42(8): 132-140. DOI: 10.12171/j.1000-1522.20200007
    [4]ZHAO Hong-gang, LE Lei, LIU Ming-li, WU Jun-hua, LIU Yan-long. Laser cutting preparation technology of solid wood parquet laminate flooring[J]. Journal of Beijing Forestry University, 2016, 38(6): 110-115. DOI: 10.13332/j.1000-1522.20150380
    [5]HONG Yan, CHEN Zhi-lin, DAI Si-lan. Light induction on flowering characteristics of cut chrysanthemum ‘Reagan’[J]. Journal of Beijing Forestry University, 2015, 37(3): 133-138. DOI: 10.13332/j.1000-1522.20140223
    [6]LI Bo, LI Shu-sen, YANG Hong-ze, LI Bin.. Analysis of occupational hazards in gardeners爷cutting#br# irrigation posture.[J]. Journal of Beijing Forestry University, 2014, 36(2): 145-148.
    [7]ZHANG Wen-chao, CAO Yuan, WU Jia-ye, HAO Rui-zhi, JING Yan-ping. Laser microdissection system of poplar anther.[J]. Journal of Beijing Forestry University, 2013, 35(1): 139-143.
    [8]CHEN Cheng, YU Guo-sheng. Effect of sliding cutting angle of bush reciprocating cutter on bush cutting[J]. Journal of Beijing Forestry University, 2011, 33(2): 115-119.
    [9]HAN Ke-ting, WANG Juan, DAI Si-lan. Adventitous shoot regeneration from internode transverse thin cell layers of cut spray chrysanthemum.[J]. Journal of Beijing Forestry University, 2009, 31(2): 102-107.
    [10]YANG Yong-fu, XI Bao-tian, LI Li. Cutting forces of moso bamboo[J]. Journal of Beijing Forestry University, 2006, 28(4): 17-21.
  • Cited by

    Periodical cited type(7)

    1. 王佳庆. 北京市白皮松栽培技术优化研究. 现代园艺. 2025(04): 13-14+18 .
    2. 赵娜,吕建魁,李少宁,徐晓天,李斌,赵加辉,鲁绍伟. 不同干旱处理刺槐、侧柏光合特性与内源脱落酸含量的相关关系. 生态学报. 2024(05): 2100-2114 .
    3. 党毅,王维,张永娥,王渝淞,丁兵兵,樊登星,贾国栋,余新晓,董俊杰. 坝上高原不同植被类型覆盖下土壤水分含量对降雨的动态响应. 北京林业大学学报. 2023(05): 106-118 . 本站查看
    4. 刘诗莹,鲁绍伟,李少宁,徐晓天,孙芷郁,赵娜. 北京市七种园林树种叶水势动态特征及其影响因素分析. 北方园艺. 2022(07): 75-82 .
    5. 岳军伟,张美妮,赵培. 秦岭南麓油松林水分利用效率的边缘效应研究. 商洛学院学报. 2022(02): 1-6 .
    6. 于丰源,张金鑫,孙一荣,宋立宁. 科尔沁沙地主要造林树种叶片δ~(13)C比较研究. 林业科学研究. 2022(04): 179-187 .
    7. 韩璐 ,杨菲 ,吴应明 ,牛云明 ,曾祎明 ,陈立欣 . 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应. 植物生态学报. 2021(12): 1350-1364 .

    Other cited types(8)

Catalog

    Article views (1516) PDF downloads (66) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return