• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Mingxia, Wang Yajun, Wang Fengqin, Gao Bo, Shan Yanlong, Yin Sainan, Ji Xin, Shu Lifu. Effects of different heating times and humus particle sizes on vertical combustion of forest underground fire based on simulated spot burning[J]. Journal of Beijing Forestry University, 2021, 43(3): 66-72. DOI: 10.12171/j.1000-1522.20200047
Citation: Wang Mingxia, Wang Yajun, Wang Fengqin, Gao Bo, Shan Yanlong, Yin Sainan, Ji Xin, Shu Lifu. Effects of different heating times and humus particle sizes on vertical combustion of forest underground fire based on simulated spot burning[J]. Journal of Beijing Forestry University, 2021, 43(3): 66-72. DOI: 10.12171/j.1000-1522.20200047

Effects of different heating times and humus particle sizes on vertical combustion of forest underground fire based on simulated spot burning

More Information
  • Received Date: March 03, 2020
  • Revised Date: March 27, 2020
  • Available Online: March 01, 2021
  • Published Date: April 15, 2021
  •   Objective  The combustion of underground fire is a slow, flameless, long duration smoldering, which does great harm to forest. Daxing’anling region is a frequent area of forest underground fire in northeastern China. This paper aims to study the effects of different heating times and humus particle sizes on the vertical combustion of underground fires, aiming to provide a reference for the prevention, monitoring and suppression of underground fires in the area.
      Method  Taking the typical forest type in the Daxing’an Mountains, i.e. Larix gmelinii forest as the research object, according to the indoor control simulation of scorching experiment data, SPSS was used to perform two-factor analysis of variance, and the Origin software was used to draw. The effects of three heating times and five humus particle sizes on the spreading speed and the highest temperature at different depths during the vertical combustion of underground fire were studied.
      Result  During the vertical burning process of the forest underground fire, the temperature of the highest burning at a depth of 3 cm was only affected by the heating time and the difference was significant (P < 0.05), but the effects of humus particle size on the difference were not significant (P > 0.05). The highest temperature of combustion at a depth of 6 cm was affected by the heating time (P < 0.05) and the particle size of humus (P < 0.05). When the depth was greater than 6 cm, the maximum combustion temperature was only affected by the humus particle size and the difference was significant (P < 0.05). The spread rate during the vertical combustion of forest underground fires was only affected by the humus particle size. There were significant differences between the spreading speeds (P < 0.05).
      Conclusion  The highest temperature of underground forest fires burning at 3 cm and 6 cm depth rises with the increase of heating time, and the burning temperature is the highest when heated for 2 h. When the vertical combustion depth is 9−21 cm, the humus particle size is 40 mesh, the burning temperature is the highest. Among the effects of humus particle size on the spread speed of forest underground fires, the spread speed of humus particle size 20 mesh is the fastest; when the humus particle size is 60 mesh, it is the criticality in the process of underground fire combustion. The highest combustion temperature and spread speed are lower.
  • [1]
    Samira O, Laure P, Hugo A, et al. Burning potential of fire refuges in the boreal mixedwood forest[J]. Forests, 2016, 7(12): 2−17.
    [2]
    Suresh B K V, Roy A, Prasad P R. Forest fire risk modeling in Uttarakhand Himalaya using TERRA satellite datasets[J]. European Journal of Remote Sensing, 2016, 49: 389−395.
    [3]
    Turetsky M R, Benscoter B, Page S, et al. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 2014, 8(1): 11−14.
    [4]
    Rein G, Cleaver N, Ashton C, et al. The severity of smouldering peat fires and damage to the forest soil[J]. Catena, 2008, 74(3): 304−309. doi: 10.1016/j.catena.2008.05.008
    [5]
    Davies G M, Gray A, Rein G, et al. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland[J]. Forest Ecology and Management, 2013, 308(7): 169−177.
    [6]
    Huang X Y, Rein G. Upward-and-downward spread of smoldering peat fire[J]. Proceedings of the Combustion Institute, 2018, 21: 9−17.
    [7]
    Reardon J, Hungerford R, Ryan K. Factors affecting sustained smouldering in organic soils from pocosin and pond pine woodland wetlands[J]. International Journal of Wildland Fire, 2007, 16(1): 107−118. doi: 10.1071/WF06005
    [8]
    唐抒圆, 李华, 单延龙, 等. 森林地下火特征及防控措施[J]. 世界林业研究, 2019, 32(3):42−48.

    Tang S Y, Li H, Shan Y L, et al. Characteristics and control of underground forest fire[J]. World Forestry Research, 2019, 32(3): 42−48.
    [9]
    何诚, 舒立福, 张思玉, 等. 大兴安岭森林草原地下火阴燃特征研究[J]. 西南林业大学学报(自然科学), 2020, 40(2):103−110.

    He C, Shu L F, Zhang S Y, et al. Research on underground fire smouldering characteristics of forest steppe in Great Xing’an Mountains in Heilongjiang Province[J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(2): 103−110.
    [10]
    尹赛男, 单延龙, 宋光辉, 等. 不同粒径腐殖质火垂直燃烧特征研究[J]. 中南林业科技大学学报, 2019, 39(10):95−101.

    Yin S N, Shan Y L, Song G H, et al. Study on vertical combustion characteristics of humus fire under different particle sizes[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 95−101.
    [11]
    辛颖, 王新然, 李禹洁. 森林腐殖质阴燃向明火转变实验研究[J]. 消防科学与技术, 2018, 37(9):1162−1166. doi: 10.3969/j.issn.1009-0029.2018.09.002

    Xin Y, Wang X R, Li Y J. Experimental study on the transition of forest humus from smoldering to open flame[J]. Fire Science and Technology, 2018, 37(9): 1162−1166. doi: 10.3969/j.issn.1009-0029.2018.09.002
    [12]
    Anderson J A R. Observations on climatic damage in peat swamp forest in Sarawak[J]. Commonwealth Forestry Review, 1964, 43(2): 145−158.
    [13]
    舒立福, 王明玉, 田晓瑞, 等. 大兴安岭林区地下火形成火环境研究[J]. 自然灾害学报, 2003, 12(4):62−67. doi: 10.3969/j.issn.1004-4574.2003.04.011

    Shu L F, Wang M Y, Tian X R, et al. Fire environment mechanism of ground fire formation in Daxing’an Mountains[J]. Journal of Natural Dusasters, 2003, 12(4): 62−67. doi: 10.3969/j.issn.1004-4574.2003.04.011
    [14]
    Hadden R M, Rein G, Belcher C M. Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2547−2553. doi: 10.1016/j.proci.2012.05.060
    [15]
    单延龙. 大兴安岭森林可燃物的研究[D]. 哈尔滨: 东北林业大学, 2003.

    Shan Y L. Study on froest fuel of Daxing’an Mountains in northeast China[D]. Harbin: Northeast Forestry University, 2003.
    [16]
    张运林, 孙萍, 胡海清, 等. 风速对蒙古栎阔叶床层两个重要失水时间的影响[J]. 中南林业科技大学学报, 2018, 38(4):65−71.

    Zhang Y L, Sun P, Hu H Q, et al. Effects of wind speed on two key drying times of fuel beds composed of Mongolian oak leaves[J]. Journal of Central South University of Forestry & Technology, 2018, 38(4): 65−71.
    [17]
    张恒, 金森, 张运林, 等. 气象法预测盘古林场可燃物含水率的外推精度[J]. 中南林业科技大学学报, 2016, 36(12):61−67.

    Zhang H, Jin S, Zhang Y L, et al. Meteorological elements regression method is used to predict Pangu Forest Farm extrapolation accuracy analysis of fuel moisture content[J]. Journal of Central South University of Forestry & Technology, 2016, 36(12): 61−67.
    [18]
    满子源, 胡海清, 张运林, 等. 帽儿山地区典型地表可燃物含水率动态变化及预测模型[J]. 北京林业大学学报, 2019, 41(3):49−57.

    Man Z Y, Hu H Q, Zhang Y L, et al. Dynamic change and prediction model of moisture content of surface fuel in Maoer Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 49−57.
    [19]
    孙向阳. 土壤学[M]. 北京: 中国林业出版社, 2010.

    Sun X Y. Soil science[M]. Beijing: China Forestry Publishing House, 2010.
    [20]
    张吉利, 邸雪颖. 地下火及阴燃研究进展[J]. 温带林业研究, 2018, 1(3):19−22. doi: 10.3969/j.issn.2096-4900.2018.03.004

    Zhang J L, Di X Y. The study of ground fire and smoldering: a review[J]. Journal of Temperate Forestry Research, 2018, 1(3): 19−22. doi: 10.3969/j.issn.2096-4900.2018.03.004
    [21]
    辛颖, 历美岑. 粒径对森林腐殖质阴燃传播的影响[J]. 消防科学与技术, 2017, 36(8):1037−1040. doi: 10.3969/j.issn.1009-0029.2017.08.001

    Xin Y, Li M C. The influence of particle size on smoldering combustion of forest humus[J]. Fire Science and Technology, 2017, 36(8): 1037−1040. doi: 10.3969/j.issn.1009-0029.2017.08.001
    [22]
    者香, 赵伟涛, 陈海翔, 等. 泥炭粒径对阴燃蔓延速率影响的实验研究[J]. 火灾科学, 2014, 23(3):129−135. doi: 10.3969/j.issn.1004-5309.2014.03.01

    Zhe X, Zhao W T, Chen H X, et al. Influence of particle size on the spreading rate of peat smoldering: an experimental study[J]. Fire Safety Science, 2014, 23(3): 129−135. doi: 10.3969/j.issn.1004-5309.2014.03.01
    [23]
    He F, Yi W, Li Y, et al. Effects of fuel properties on the natural downward smoldering of piled biomass powder: experimental investigation[J]. Biomass and Bioenergy, 2014, 67: 288−296. doi: 10.1016/j.biombioe.2014.05.003
    [24]
    李小川, 李兴伟, 王振师, 等. 广东森林火灾的火源特点分析[J]. 中南林业科技大学学报, 2008, 28(1):89−92. doi: 10.3969/j.issn.1673-923X.2008.01.025

    Li X C, Li X W, Wang Z S, et al. Analysis of fire source characteristics of Guangdong forest fires[J]. Journal of Central South University of Forestry & Technology, 2008, 28(1): 89−92. doi: 10.3969/j.issn.1673-923X.2008.01.025
    [25]
    Ohlemiller T J. Modeling of smoldering combustion propagation[J]. Progress in Energy & Combustion Science, 1985, 11(4): 277−310.
    [26]
    者香. 泥炭粒径、含水率和无机物含量对阴燃蔓延速率影响的实验研究[D]. 合肥: 中国科学技术大学, 2015.

    Zhe X. Experimental study on the influence of particle size, moisture content and mineral content on the spreading rate of peat smoldering[D]. Hefei: University of Science and Technology of China, 2015.
  • Related Articles

    [1]Guan Zhuizhui, Zhang Yandong. Spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot[J]. Journal of Beijing Forestry University, 2020, 42(8): 53-60. DOI: 10.12171/j.1000-1522.20200004
    [2]Yao Jie, Song Zilong, Zhang Chunyu, Meng Lingjun, Zhao Xiuhai. Effects of distance and density dependence on seedling growth in a broadleaved Korean pine forest in Jiaohe of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 108-117. DOI: 10.13332/j.1000-1522.20190027
    [3]Wu Zhaofei, Zhang Yuqiu, Zhang Zhonghui, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Study on the relationship between forest structure and productivity of temperate forests in Northeast China[J]. Journal of Beijing Forestry University, 2019, 41(5): 48-55. DOI: 10.13332/j.1000-1522.20190017
    [4]Tao Changsen, Niu Shukui, Chen Ling, Li Lianqiang. Canopy characteristics and potential crown fire behavior of main coniferous forest in Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(5): 82-89. DOI: 10.13332/j.1000-1522.20170408
    [5]LOU Xin, GU Yan, ZHANG Jun-hui, HAN Shi-jie. Effects of snow cover and freeze-thaw cycles on stability of surface soil aggregates in forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 63-70. DOI: 10.13332/j.1000-1522.20150435
    [6]LIU Yan-hong, MA Wei.. Carbon distribution and combustibility of fuels in Larix olgensis plantations.[J]. Journal of Beijing Forestry University, 2013, 35(3): 32-38.
    [7]JIANG Ping, YE Ji, WANG Shao-xian, , FENG Xiu-chun, HUANG Xiang-tong, NIU Li-jun, WU Gang. Vertical distribution of floristic composition, community structure and biodiversity of forest communities along altitudinal gradients on south slope of the Changbai Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 258-262.
    [8]CAO Wei, LI Yuanyuan. Vertical pattern of flora from Changbai Mountain, China.[J]. Journal of Beijing Forestry University, 2008, 30(4): 53-58.
    [9]WU Jia-bing, GUAN De-xin, ZHANG Mi, HAN Shi-jie, YU Gui-rui, SUN Xiao-min. Carbon budget characteristics of the broadleaved Korean pine forests in Changbaishan Mountains[J]. Journal of Beijing Forestry University, 2007, 29(1): 1-6. DOI: 10.13332/j.1000-1522.2007.01.001
    [10]YANG Li-yun, LI Wen-hua. Fine root distribution and turnover in a broad-leaved and Korean pine climax forest of the Changbai Mountain in China[J]. Journal of Beijing Forestry University, 2005, 27(2): 1-5.
  • Cited by

    Periodical cited type(1)

    1. 王雯倩,蔡玉山,肖湘,段亮亮. 老爷岭多年冻土小流域春季冻融期径流溶解性有机碳变化特征. 生态学报. 2023(16): 6716-6727 .

    Other cited types(1)

Catalog

    Article views (1516) PDF downloads (65) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return