• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zeng Weisheng, Sun Xiangnan, Wang Liuru, Wang Wei, Pu Ying. Developing stand volume, biomass and carbon stock models for ten major forest types in forest region of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 1-8. DOI: 10.12171/j.1000-1522.20200058
Citation: Zeng Weisheng, Sun Xiangnan, Wang Liuru, Wang Wei, Pu Ying. Developing stand volume, biomass and carbon stock models for ten major forest types in forest region of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 1-8. DOI: 10.12171/j.1000-1522.20200058

Developing stand volume, biomass and carbon stock models for ten major forest types in forest region of northeastern China

More Information
  • Received Date: March 05, 2020
  • Revised Date: June 13, 2020
  • Available Online: February 23, 2021
  • Published Date: April 15, 2021
  •   Objective  Stand-level volume, biomass and carbon stock models or tables are necessary quantitative tools for implementing forest management inventory. Developing stand volume, biomass and carbon stock models for ten major forest types in forest region of northeastern China is not only an exploration of methodology, but also provides reference results for practice.
      Method  Based on the field measurement data of 2 000 sample plots distributed in 10 forest types in northeastern China, i.e. spruce & fir (Picea spp. & Abies spp.), larch (Larix spp.), Mongolian scotch pine (Pinus sylvestris var. mongolica), Korean pine (Pinus koraiensis), oak (Quercus spp.), birch (Betula spp.), poplar (Populus spp.), elm (Ulmus spp.), linden (Tilia spp.), and other three precious broadleaved species (Fraxinus mandshurica, Juglans mandshurica & Phellodendron amurense), the stand-level volume, biomass and carbon stock models were developed through independent nonlinear regression (INR), simultaneous error-in-variable equations (SEIVE), and SEIVE with dummy variable modeling approach.
      Result  The coefficients of determination (R2) of the population-averaged stand-level volume, biomass and carbon stock models based on all sample plots were 0.945, 0.805 and 0.839, respectively; and those of tthe models with type-specific parameters were 0.959, 0.949 and 0.951, respectively. The R2 values of stand-level volume, biomass and carbon stock models for 10 forest types were all more than 0.86, the mean prediction errors (MPE) were all less than 3%, and the mean percent standard errors (MPSE) were almost less than 10%. For the volume stock models, the R2 values were between 0.876−0.980, MPE were between 0.90%−1.95%, and MPSE were between 5.14%−11.89%; for the biomass stock models, the R2 values were between 0.864−0.988, MPE were between 0.66%−2.07%, and MPSE were between 3.61%−11.60%; and for carbon stock models, the R2 values were between 0.866−0.988, MPE were between 0.67%−1.96%, and MPSE were between 3.65%−11.57%.
      Conclusion  The volume stock per hectare of different forest types mainly depends upon basal area and mean tree height of forest stands, and the biomass stock mainly relates to volume stock and mean tree height. The SEIVE with dummy variable modeling approach is a feasible method for developing stand-level stock models. The developed volume, biomass and carbon stock models for 10 major forest types in northeastern China in this study meet the need of precision requirements to the regulation on forest management inventory, indicating that the models can be applied in practice.
  • [1]
    IUFRO. International guidelines for forest monitoring[R]. Volume 5. Vienna: IUFRO World Series, 1994.
    [2]
    IPCC. IPCC guidelines for national greenhouse gas inventory [R/OL]. 2006. [2020−03−11]. http://www.ipcc-nggip.iges.or.jp.
    [3]
    FAO. Global forest resources assessment 2020: guidelines and specifications[R]. Rome: FRA Working Paper, 2018.
    [4]
    张雄清, 张建国, 段爱国. 基于单木水平和林分水平的杉木兼容性林分蓄积量模型[J]. 林业科学, 2014, 50(1):82−87.

    Zhang X Q, Zhang J G, Duan A G. Compatibility of stand volume model for Chinese fir based on tree-level and stand-level[J]. Scientia Silvae Sinicae, 2014, 50(1): 82−87.
    [5]
    曾伟生, 杨学云, 陈新云. 单木和林分水平一元和二元材积模型的预估精度对比[J]. 中南林业调查规划, 2017, 36(4):1−6.

    Zeng W S, Yang X Y, Chen X Y. Comparison on prediction precision of one-variable and two-variable volume models on tree-level and stand-level[J]. Central South Forest Inventory & Planning, 2017, 36(4): 1−6.
    [6]
    Jagodziński A M, Dyderski M K, Gesikiewicz K, et al. Tree and stand level estimations of Abies alba Mill. aboveground biomass[J]. Annals of Forest Science, 2019, 76: 56. doi: 10.1007/s13595-019-0842-y.
    [7]
    中华人民共和国农林部. 立木材积表 (LY208—77)[S]. 北京: 中国标准出版社, 1977.

    Agriculture and Forestry Ministry of China. Tree volume tables (LY208−77)[S]. Beijing: China Standard Press, 1977.
    [8]
    Luo Y J, Wang X K, Ouyang Z Y, et al. A review of biomass equations for China’s tree species[J]. Earth System Science Data, 2020, 12(1): 21−40. doi: 10.5194/essd-12-21-2020
    [9]
    国家林业局. 立木生物量模型及碳计量参数—落叶松(LY/T 2654—2016)[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Larix (LY/T 2654−2016)[S]. Beijing: China Standard Press, 2017.
    [10]
    国家林业局. 立木生物量模型及碳计量参数—云杉(LY/T 2655—2016)[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Abies (LY/T 2656−2016)[S]. Beijing: China Standard Press, 2017.
    [11]
    国家林业局. 立木生物量模型及碳计量参数—冷杉(LY/T 2656—2016)[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Picea (LY/T 2656−2016)[S]. Beijing: China Standard Press, 2017.
    [12]
    国家林业局. 立木生物量模型及碳计量参数—栎树(LY/T 2658—2016)[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Quercus (LY/T 2658−2016)[S]. Beijing: China Standard Press, 2017.
    [13]
    国家林业局. 立木生物量模型及碳计量参数—桦树(LY/T 2659—2016)[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Betula (LY/T 2659−2016) [S]. Beijing: China Standard Press, 2017.
    [14]
    Zeng W S. Developing one-variable individual tree biomass models based on wood density for 34 tree species in China[J]. Forest Research, 2018, 7: 1−5. doi: 10.4172/2168-9776.1000217
    [15]
    Shiver B D, Brister G H. Tree and stand volume functions for Eucalyptus saligna[J]. Forest Ecology and Management, 1992, 47(Suppl.1–4): 211−223.
    [16]
    Næsset E. Stand volume functions for Picea abies in western Norway[J]. Scandinavian Journal of Forest Research, 1995, 10(1): 42−50.
    [17]
    Næsset E, Tveite B. Stand volume functions for Picea abies in eastern, central and northern Norway[J]. Scandinavian Journal of Forest Research, 1999, 14: 164−174. doi: 10.1080/02827589950152890.
    [18]
    Chamshama S A O, Mugasha A G, Zahabu E. Stand biomass and volume estimation for Miombo woodlands at Kitulangalo, Morogoro, Tanzania[J]. Southern African Forestry Journal, 2004, 200: 59−69. doi: 10.1080/20702620.2004.10431761.
    [19]
    Castedo-Dorado F, Gómez-García E, Diéguez-Aranda U, et al. Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain[J]. Annals of Forest Science, 2012, 69: 735−746. doi: 10.1007/s13595-012-0191-6.
    [20]
    Usoltsev V A, Shobairi S O R, Chasovskikh V P. Triple harmonization of transcontinental allometric of Picea spp. and Abies spp. forest stand biomass[J]. Ecology, Environment and Conservation, 2018, 24(4): 1966−1972.
    [21]
    Jagodziński A M, Dyderski M K, Gesikiewicz K, et al. How do tree stand parameters affect young Scots pine biomass? Allometric equations and biomass conversion and expansion factors[J]. Forest Ecology and Management, 2018, 409: 74−83. doi: 10.1016/j.foreco.2017.11.001
    [22]
    Jagodziński A M, Dyderski M K, Gesikiewicz K, et al. Tree- and stand-level biomass estimation in a Larix decidua Mill. chronosequence[J/OL]. Forests, 2018, 9: 587 [2020−01−13]. https://www.mdpi.com/1999-4907/9/10/587.
    [23]
    Jagodziński A M, Dyderski M K, Gęsikiewicz K, et al. Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in western Poland[J]. European Journal of Forest Research, 2019, 138: 673−683. doi: 10.1007/s10342-019-01197-z
    [24]
    Burt A, Calders K, Cuni-Sanchez A, et al. Assessment of bias in pan-tropical biomass predictions[J]. Frontiers in Forests and Global Change, 2020, 3: 12. doi: 10.3389/ffgc.2020.00012
    [25]
    方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5):497−508.

    Fang J Y, Liu G H, Xu S L. Biomass and net production of forest vegetation in China[J]. Acta Ecologica Sinica, 1996, 16(5): 497−508.
    [26]
    Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292: 2320−2322. doi: 10.1126/science.1058629
    [27]
    余松柏, 叶金盛, 王登峰, 等. 编制林分形高表估计林分蓄积量方法的研究[J]. 中南林业调查规划, 2005, 24(3):5−9. doi: 10.3969/j.issn.1003-6075.2005.03.002.

    Yu S B, Ye J S, Wang D F, et al. Study on method of establishing stand form-height table for volume estimation[J]. Central South Forest Inventory & Planning, 2005, 24(3): 5−9. doi: 10.3969/j.issn.1003-6075.2005.03.002.
    [28]
    侯振宏, 张小全, 徐德应, 等. 杉木人工林生物量和生产力研究[J]. 中国农学通报, 2009, 25(5):97−103.

    Hou Z H, Zhang X Q, Xu D Y, et al. Study on biomass and productivity of Chinese fir plantation[J]. Chinese Agricultural Science Bulletin, 2009, 25(5): 97−103.
    [29]
    王斌, 刘某承, 张彪. 基于森林资源清查资料的森林植被净生产量及其动态变化研究[J]. 林业资源管理, 2009(1):35−42. doi: 10.3969/j.issn.1002-6622.2009.01.009.

    Wang B, Liu M C, Zhang B. Dynamics of net production of China forest vegetation based on forest inventory data[J]. Forest Resources Management, 2009(1): 35−42. doi: 10.3969/j.issn.1002-6622.2009.01.009.
    [30]
    王艳婷, 李崇贵, 郝利军. 用岭估计估测以分类为前提的森林蓄积量[J]. 东北林业大学学报, 2014, 42(9):39−42, 57. doi: 10.3969/j.issn.1000-5382.2014.09.009.

    Wang Y T, Li C G, Hao L J. Forest volume estimation on the premise of classification by ridge estimate[J]. Journal of Northeast Forestry University, 2014, 42(9): 39−42, 57. doi: 10.3969/j.issn.1000-5382.2014.09.009.
    [31]
    Hou Y N, Wu H L, Zeng W X, et al. Conversion parameters for stand biomass estimation of four subtropical forests in southern China[C/OL]. Beijing: Proceedings of 2016 International Conference on Environment, Climate Change and Sustainable Development, 2017 [2020−03−18]. DOI: 10.12783/dteees/eccsd2016/5846.
    [32]
    Mei G Y, Sun Y J, Saeed S. Models for predicting the biomass of Cunninghamia lanceolata trees and stands in southeastern China[J/OL]. PLoS ONE, 2017, 12(1): e0169747 [2020−03−15]. https://pubmed.ncbi.nlm.nih.gov/28095512/.
    [33]
    Zhao M M, Yang J L, Zhao N, et al. Estimation of China’s forest stand biomass carbon sequestration based on the continuous biomass expansion factor model and seven forest inventories from 1977 to 2013[J]. Forest Ecology and Management, 2019, 448: 528−534. doi: 10.1016/j.foreco.2019.06.036.
    [34]
    Dong L H, Zhang L J, Li F R. Evaluation of stand biomass estimation methods for major forest types in the eastern Da Xing’an Mountain, northeast China[J]. Forests, 2019, 10: 715. doi: 10.3390/f10090715.
    [35]
    曾伟生. 云南省森林生物量与生产力研究[J]. 中南林业调查规划, 2005, 24(4):1−3, 13. doi: 10.3969/j.issn.1003-6075.2005.04.001.

    Zeng W S. Research on forest biomass and productivity in Yunnan[J]. Central South Forest Inventory & Planning, 2005, 24(4): 1−3, 13. doi: 10.3969/j.issn.1003-6075.2005.04.001.
    [36]
    欧阳钦. 长沙望城区森林植被生物量及碳储量研究[D]. 长沙: 中南林业科技大学, 2014.

    Ouyang Q. The research on biomass and carbon storage of forest vegetations in Wangcheng District, Changsha[D]. Changsha: Central South University of Forestry and Technology, 2014.
    [37]
    梁兴军. 济南市森林植被生物量和碳储量调查研究[D]. 济南: 山东师范大学, 2015.

    Liang X J. Research on biomass and carbon storage of forest vegetation in Jinan City[D]. Jinan: Shandong Normal University, 2015.
    [38]
    陈小林. 湖南安仁县森林生态系统生物量和碳贮量研究[D]. 长沙: 中南林业科技大学, 2016.

    Chen X L. Biomass and carbon storage of typical forest ecosystem in Anren County of Hunan Province[D]. Changsha: Central South University of Forestry and Technology, 2016.
    [39]
    Soares P, Tome M. Biomass expansion factors for Eucalyptus globulus stands in Portugal[J]. Forest Systems, 2012, 21(1): 141−152. doi: 10.5424/fs/2112211-12086.
    [40]
    李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.

    Li H K, Lei Y C. Estimation and evaluation of forest biomass and carbon storage in China[M]. Beijing: China Forestry Publishing House, 2010.
    [41]
    曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2):137−143.

    Zeng W S, Tang S Z. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models[J]. Forest Research, 2011, 24(2): 137−143.
    [42]
    唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算(ForStat教程)[M]. 北京: 科学出版社, 2008.

    Tang S Z, Lang K J, Li H K. Statistics and computation of biomathematical models (ForStat textbook)[M]. Beijing: Science Press, 2008.
    [43]
    Zeng W S, Zhang H R, Tang S Z. Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales:a case study for Masson pine (Pinus massoniana) in southern China[J]. Canadian Journal of Forest Research, 2011, 41(7): 1547−1554. doi: 10.1139/x11-068
    [44]
    Zeng W S. Using nonlinear mixed model and dummy variable model approaches to construct origin-based single tree biomass equations[J]. Trees, 2015, 29(1): 275−283. doi: 10.1007/s00468-014-1112-0
    [45]
    曾伟生, 唐守正. 立木生物量模型的优度评价和精度分析[J]. 林业科学, 2011, 47(11):106−113. doi: 10.11707/j.1001-7488.20111117

    Zeng W S, Tang S Z. Goodness evaluation and precision analysis of tree biomass equations[J]. Scientia Silvae Sinicae, 2011, 47(11): 106−113. doi: 10.11707/j.1001-7488.20111117
    [46]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 森林资源规划设计调查技术规程(GB/T 26424—2010)[S]. 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of PRC. Technical regulations for inventory for forest management planning and design[S]. Beijing: Standards Press of China, 2011.
  • Cited by

    Periodical cited type(19)

    1. 陈逊龙,孙一铭,郭仕杰,段煜柯,唐桉琦,叶章熙,张厚喜. 应用无人机可见光影像和面向对象的随机森林模型对城市树种分类. 东北林业大学学报. 2024(03): 48-59 .
    2. 王柳,肖艳琴,陈秋月,周增志,阿开贤,赵明,马燕. 茶园间种桉树对茶叶品质的影响研究. 茶叶通讯. 2024(01): 37-47 .
    3. 付永浩,李伟坡,张爱军. 面向对象和集成学习算法在森林蓄积量遥感估测中的应用. 东北林业大学学报. 2024(06): 64-69+78 .
    4. 孙妙琦,岳彩荣,段云芳,罗洪斌,余琼芬,罗广飞,徐天蜀. 光学协同合成孔径雷达数据的森林类型分类研究. 森林工程. 2024(04): 115-126 .
    5. 周湘山,杨武年,罗可,朴虹奕,周涛,周杰,唐晓鹿. 基于机器学习算法和空间分辨率调整的无人机高光谱树种分类研究. 遥感技术与应用. 2024(04): 880-896 .
    6. 谢天义,潘洁,孙玉琳,郑光. 应用多维遥感信息协同的森林树种分类. 东北林业大学学报. 2023(03): 73-78 .
    7. 董世英,吴田军,焦思佳. 地块级航空高光谱遥感土地覆盖制图及其精度评估. 遥感技术与应用. 2023(02): 353-361 .
    8. 帅爽,张志,张天,张焜,肖成志,陈安. 特征优化结合随机森林算法的干旱区植被高光谱遥感分类方法. 农业工程学报. 2023(09): 287-293 .
    9. 胡振华,张乔艳. 基于ASD与Hyperion高光谱数据的主要针叶树种分类研究. 林业调查规划. 2023(03): 1-6+12 .
    10. 邹泽林,程霞,刘紫薇,黄鑫. Stacking集成学习模型在森林蓄积量估测中的应用. 湖北林业科技. 2023(04): 52-57 .
    11. 王钰,董亚坤,何紫玲,王鹏,赵昊,曾维军. 基于Sentinel-2A影像的复合轮作种植结构提取. 南方农业学报. 2023(08): 2490-2498 .
    12. 温昱婷,赵静,兰玉彬,杨东建,潘方江,曹佃龙. 基于无人机可见光影像和面向对象的树种分类研究. 西北林学院学报. 2022(01): 74-80+144 .
    13. 郑迪,沈国春,王舶鉴,戴冠华,蔺菲,胡家瑞,叶吉,房帅,郝占庆,王绪高,原作强. 基于无人机高光谱影像和深度学习算法的长白山针阔混交林优势树种分类. 生态学杂志. 2022(05): 1024-1032 .
    14. 刘曼,张静. 基于多特征融合的白鹿原地区土地利用分类研究. 农业与技术. 2022(20): 84-90 .
    15. 顾云志,曹月娥,赵珮珮. 干旱区水浇地提取研究. 江苏农业科学. 2021(10): 176-182 .
    16. 钟浩,刘浩然,林文树. 激光雷达和高光谱遥感技术在树种识别中的应用. 世界林业研究. 2021(04): 41-45 .
    17. 唐锡奎. 桉树套种湿地松的生长问题探讨——以广西国有钦廉林场为例. 绿色科技. 2021(13): 117-119 .
    18. 王娟,陈永富,陈巧,李华玉,张超. 基于无人机遥感的森林参数信息提取研究进展. 林业资源管理. 2020(05): 144-151 .
    19. 邢璐琪,张桂莲,张浪,易扬,林勇,江子尧,郑谐维. 高光谱技术在植被特征监测中的应用. 园林. 2020(11): 8-14 .

    Other cited types(23)

Catalog

    Article views (3688) PDF downloads (461) Cited by(42)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return