Citation: | Lu Junqian, Wu Shu, Zhong Shanchen, Zhang Weixi, Su Xiaohua, Zhang Bingyu. Expression and function analysis of histidine kinase gene PaHK3a of poplar ‘84K’[J]. Journal of Beijing Forestry University, 2021, 43(2): 46-53. DOI: 10.12171/j.1000-1522.20200070 |
[1] |
Muller B, Sheen J. Arabidopsis cytokinin signaling pathway [J/OL]. Science Signaling STKE, 2007, 2007(407): cm5 [2020−02−13]. https://stke.sciencemag.org/content/2007/407/cm5.
|
[2] |
Werner T, Schmulling T. Cytokinin action in plant development[J]. Current Opinion in Plant Biology, 2009, 12(5): 527−538.
|
[3] |
Tran L S, Urao T, Qin F, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis[J]. PNAS, 2007, 104(51): 20623−20628.
|
[4] |
Jeon J, Kim N Y, Kim S, et al. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis[J]. Journal of Biological Chemistry, 2010, 285: 23371−23386.
|
[5] |
Sheen J. Phosphorelay and transcription control in cytokinin signal transduction[J]. Science, 2002, 296: 1650−1652.
|
[6] |
Heyl A, Schmülling T. Cytokinin signal perception and transduction[J]. Current Opinion in Plant Biology, 2003, 6(5): 480−488.
|
[7] |
Schaller F, Zerbe P, Reinbothe S, et al. The allene oxide cyclase family of Arabidopsis thaliana: localization and cyclization[J]. FEBS Journal, 2008, 275(10): 2428−2441.
|
[8] |
Hwang I, Chen H C, Sheen J, et al. Two-component signal transduction pathways in Arabidopsis[J]. Plant Physiol, 2002, 129(5): 500−515.
|
[9] |
Maruyama-Nakashita A, Nakamura Y, Yamaya T, et al. A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4 mediated cytokinin-dependent regulation[J]. Plant Journal, 2004, 38(5): 779−789.
|
[10] |
Chefdor F, Héricourt F, Koudounas K, et al. Highlighting type ARRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus[J]. Plant Science, 2018, 277: 68−78.
|
[11] |
Kim H J, Ryu H, Hong S H, et al. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006, 103(3): 814−819.
|
[12] |
Riefler M, Novsk O, Strnad M, et al. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J]. Plant Cell, 2006, 18: 40−54.
|
[13] |
Dello I R, Linhares F S, Scacchi E, et al. Cytokinins determine Arabidopsis root meristem size by controlling cell differentiation[J]. Current Biology, 2007, 17(8): 678−682.
|
[14] |
Higuchi M, Pischke M S , Mhnen A P , et al. In planta functions of the Arabidopsis cytokinin receptor family[J]. PNAS, 2004, 101(23): 8821−8826.
|
[15] |
Bartrina I, Jensen H, Novák O, et al. Gain-of-function mutants of the cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity[J]. Plant Physiology, 2007, 173(3): 1783−1797.
|
[16] |
Kang N Y, Cho C, Kim N Y, et al. Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana[J]. Journal of Plant Physiology, 2012, 169(14): 1382−1391.
|
[17] |
Jin J, Nan Y K, Sunmi K, et al. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis[J]. Journal of Biological Chemistry, 2010, 285(30): 23371−23386.
|
[18] |
Cortleven A, Nitschke S, Klaumünzer M, et al. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors[J]. Plant Physiology, 2014, 164(3): 1470−1483.
|
[19] |
Nieminen K, Immanen J, Laxell M, et al. Cytokinin signaling regulates cambial development in poplar[J]. Proceedings of the National Academy of Sciences, 2008, 105(50): 20032−20037.
|
[20] |
Sun J, Niu Q W, Tarkowski P, et al. The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis[J]. Plant Physiology, 2003, 131(1): 167−176.
|
[21] |
Verslues P E. ABA and cytokinins: challenge and opportunity for plant stress research[J]. Plant Molecular Biology, 2016, 91(6): 629−640.
|
[22] |
Tran L S, Shinozaki K, Yamaguchi-Shinozaki K, et al. Role of cytokinin responsive two component system in ABA and osmotic stress signaling[J]. Plant Signal & Behavior, 2010, 5(2): 148−150.
|
[23] |
Ramsong N, Praveen S, Ratna K, et al. Histidine kinases in plants: cross talk between hormone and stress responses[J]. Plant Signaling & Behavio, 2012, 7(10): 1230−1237.
|
[24] |
Wang B, Guo B, Xie X, et al. A novel histidine kinase gene, ZmHK9, mediate drought tolerance through the regulation of stomatal development in Arabidopsis[J]. Gene, 2012, 501(2): 171−179.
|
[25] |
Vernooij B, Friedrich L, Weymann K, et al. A central role of salicylic acid in plant disease resistance[J]. Science, 1994, 266: 1247−1250.
|
[26] |
Yusuf M, Hasan S A, Ali B, et al. Effect of salicylic acid on salinity-induced changes in Brassica juncea[J]. Journal of Integrative Plant Biology, 2008, 50(9): 1096−1102.
|
[27] |
Brito G, Costa A, Fonseca H M A C, et al. Response of Olea europaea ssp. maderensis in vitro shoots exposed to osmotie stress[J]. Scientia Horticulturae, 2003, 97(S3−S4): 411−417.
|
[28] |
张磊, 谢锦忠, 张玮, 等. 模拟干旱环境下伐桩注水对毛竹生理特性的影响[J]. 林业科学研究, 2017, 30(1):145−153.
Zhang L, Xie J Z, Zhang W, et al. Effects of water storage in bamboo stumps on physiological characteristicsof phyllostachys edulis under simulated drought environment[J]. Forest Research, 2017, 30(1): 145−153.
|
[29] |
党晓宏, 高永, 蒙仲举, 等. 3种滨藜属植物幼苗叶片对NaCl胁迫的生理响应[J]. 北京林业大学学报, 2016, 38(10):38−49.
Dang X H, Gao Y, Meng Z J, et al. Leaf physiological characteristics of seedlings of three Atriplex species under NaCl stress[J]. Journal of Beijing Forestry University, 2016, 38(10): 38−49.
|
[30] |
Sofo A, Dichio B, Xiloyannis C, et al. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree[J]. Plant Science, 2004, 166(2): 293−302.
|
[31] |
Kong J, Dong Y, Xu L, et al. Role of exogenous nitric oxide in alleviating iron deficiency-induced peanut chlorosis on calcareous soil[J]. Journal of Plant Interactions, 2014, 9(1): 450−459.
|
[1] | Dai Rui, Duan Shuaishuai, Xiao Shikui, Wei Zhipeng, Lü Shufang, Shi Guoan, Wu Jiang, Fan Bingyou. Screening of internal reference genes of cut flowers of Paeonia lactiflora and expression analysis of key genes of ethylene biosynthesis[J]. Journal of Beijing Forestry University, 2025, 47(1): 106-115. DOI: 10.12171/j.1000-1522.20240054 |
[2] | Liu Jiaming, Zhao Jian, Zhang Jianzhong, Zhao Dong. Cutting constitutive equation and its parameter measurement of oil tree peony stem[J]. Journal of Beijing Forestry University, 2020, 42(11): 138-144. DOI: 10.12171/j.1000-1522.20200229 |
[3] | Zhao Xiaozhi, Gao Li, Jia Guixia. Effects of light treatment on cutting quality of Juniperus chinensis ‘Plumosa Aurea’[J]. Journal of Beijing Forestry University, 2020, 42(8): 132-140. DOI: 10.12171/j.1000-1522.20200007 |
[4] | ZHAO Hong-gang, LE Lei, LIU Ming-li, WU Jun-hua, LIU Yan-long. Laser cutting preparation technology of solid wood parquet laminate flooring[J]. Journal of Beijing Forestry University, 2016, 38(6): 110-115. DOI: 10.13332/j.1000-1522.20150380 |
[5] | HONG Yan, CHEN Zhi-lin, DAI Si-lan. Light induction on flowering characteristics of cut chrysanthemum ‘Reagan’[J]. Journal of Beijing Forestry University, 2015, 37(3): 133-138. DOI: 10.13332/j.1000-1522.20140223 |
[6] | LI Bo, LI Shu-sen, YANG Hong-ze, LI Bin.. Analysis of occupational hazards in gardeners爷cutting#br# irrigation posture.[J]. Journal of Beijing Forestry University, 2014, 36(2): 145-148. |
[7] | ZHANG Wen-chao, CAO Yuan, WU Jia-ye, HAO Rui-zhi, JING Yan-ping. Laser microdissection system of poplar anther.[J]. Journal of Beijing Forestry University, 2013, 35(1): 139-143. |
[8] | CHEN Cheng, YU Guo-sheng. Effect of sliding cutting angle of bush reciprocating cutter on bush cutting[J]. Journal of Beijing Forestry University, 2011, 33(2): 115-119. |
[9] | HAN Ke-ting, WANG Juan, DAI Si-lan. Adventitous shoot regeneration from internode transverse thin cell layers of cut spray chrysanthemum.[J]. Journal of Beijing Forestry University, 2009, 31(2): 102-107. |
[10] | YANG Yong-fu, XI Bao-tian, LI Li. Cutting forces of moso bamboo[J]. Journal of Beijing Forestry University, 2006, 28(4): 17-21. |
1. |
王佳庆. 北京市白皮松栽培技术优化研究. 现代园艺. 2025(04): 13-14+18 .
![]() | |
2. |
赵娜,吕建魁,李少宁,徐晓天,李斌,赵加辉,鲁绍伟. 不同干旱处理刺槐、侧柏光合特性与内源脱落酸含量的相关关系. 生态学报. 2024(05): 2100-2114 .
![]() | |
3. |
党毅,王维,张永娥,王渝淞,丁兵兵,樊登星,贾国栋,余新晓,董俊杰. 坝上高原不同植被类型覆盖下土壤水分含量对降雨的动态响应. 北京林业大学学报. 2023(05): 106-118 .
![]() | |
4. |
刘诗莹,鲁绍伟,李少宁,徐晓天,孙芷郁,赵娜. 北京市七种园林树种叶水势动态特征及其影响因素分析. 北方园艺. 2022(07): 75-82 .
![]() | |
5. |
岳军伟,张美妮,赵培. 秦岭南麓油松林水分利用效率的边缘效应研究. 商洛学院学报. 2022(02): 1-6 .
![]() | |
6. |
于丰源,张金鑫,孙一荣,宋立宁. 科尔沁沙地主要造林树种叶片δ~(13)C比较研究. 林业科学研究. 2022(04): 179-187 .
![]() | |
7. |
韩璐 ,杨菲 ,吴应明 ,牛云明 ,曾祎明 ,陈立欣 . 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应. 植物生态学报. 2021(12): 1350-1364 .
![]() |