Citation: | Wang Junjie, Jiang Lichun. Predicting height to crown base for Larix gmelinii using quantile groups[J]. Journal of Beijing Forestry University, 2021, 43(3): 9-17. DOI: 10.12171/j.1000-1522.20200075 |
[1] |
Ritchie M W, Hann D W. Equations for predicting height to crown base for fourteen tree species in southwest Oregon[R]. Corvallis: Oregon State University, 1987: 1−14.
|
[2] |
Rijal B, Weiskittel A R, Kershaw J A, Jr. Development of height to crown base models for thirteen tree species of the North American Acadian Region[J]. The Forestry Chronicle, 2012, 88(1): 60−73. doi: 10.5558/tfc2012-011
|
[3] |
李想, 董利虎, 李凤日. 基于联立方程组的人工樟子松枝下高模型构建[J]. 北京林业大学学报, 2018, 40(6):9−18.
Li X, Dong L H, Li F R. Building height to crown base models for Mongolian pine plantation based on simultaneous equations in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(6): 9−18.
|
[4] |
Russell M B, Weiskittel A R, Kershaw J A. Comparing strategies for modeling individual-tree height and height-to-crown base increment in mixed-species Acadian forests of northeastern North America[J]. European Journal of Forest Research, 2014, 133(6): 1121−1135. doi: 10.1007/s10342-014-0827-1
|
[5] |
Sharma R P, Vacek Z, Vacek S, et al. Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.)[J/OL]. PLoS ONE, 2017, 12(10): e0186394 [2020−01−02]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186394.
|
[6] |
段光爽, 李学东, 冯岩, 等. 基于广义非线性混合效应的华北落叶松天然次生林枝下高模型[J]. 南京林业大学学报 (自然科学版), 2018, 42(2):170−176.
Duan G S, Li X D, Feng Y, et al. Generalized nonlinear mixed-effects crown base height model of Larix principis-rupprechtii natural secondary forests[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(2): 170−176.
|
[7] |
Fu L, Zhang H, Sharma R P, et al. A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China[J]. Forest Ecology and Management, 2017, 384(1): 34−43.
|
[8] |
Yang Y, Huang S. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta, Canada[J]. European Journal of Forest Research, 2018, 137(2): 153−167. doi: 10.1007/s10342-017-1095-7
|
[9] |
Jia W, Chen D. Nonlinear mixed-effects height to crown base and crown length dynamic models using the branch mortality technique for a Korean larch (Larix olgensis) plantations in northeast China[J]. Journal of Forestry Research, 2019, 30(6): 2095−2109. doi: 10.1007/s11676-019-01045-1
|
[10] |
Koenker R, Bassett G. Regression quantiles[J]. Econometrica: Journal of the Econometric Society, 1978, 46(1): 33−50. doi: 10.2307/1913643
|
[11] |
Zhang L, Bi H, Gove J H, et al. A comparison of alternative methods for estimating the self-thinning boundary line[J]. Canadian Journal of Forest Research, 2005, 35(6): 1507−1514. doi: 10.1139/x05-070
|
[12] |
Mehtätalo L, Gregoire T G, Burkhart H E. Comparing strategies for modeling tree diameter percentiles from remeasured plots[J]. Environmetrics: The Official Journal of the International Environmetrics Society, 2008, 19(5): 529−548.
|
[13] |
Zang H, Lei X, Zeng W. Height-diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models[J]. Forestry: An International Journal of Forest Research, 2016, 89(4): 434−445. doi: 10.1093/forestry/cpw022
|
[14] |
Bohora S B, Cao Q V. Prediction of tree diameter growth using quantile regression and mixed-effects models[J]. Forest Ecology and Management, 2014, 319(5): 62−66.
|
[15] |
Cao Q V, Wang J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015, 61(2): 213−219. doi: 10.5849/forsci.14-008
|
[16] |
马岩岩, 姜立春. 基于非线性分位数回归的落叶松树干削度方程[J]. 林业科学, 2019, 55(10):68−75.
Ma Y Y, Jiang L C. Stem taper function for Larix gmelinii based on nonlinear quantile regression[J]. Scientia Silvae Sinicae, 2019, 55(10): 68−75.
|
[17] |
Özçelik R, Cao Q V, Trincado G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. Forest Ecology and Management, 2018, 419: 240−248.
|
[18] |
Sharma M, Parton J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J]. Forest Ecology and Management, 2007, 249(3): 187−198. doi: 10.1016/j.foreco.2007.05.006
|
[19] |
Raptis D, Kazana V, Kazaklis A, et al. A crown width-diameter model for natural even-aged black pine forest management[J]. Forests, 2018, 9(10): 610. doi: 10.3390/f9100610
|
[20] |
Fu L, Sun H, Sharma R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China[J]. Forest Ecology and Management, 2013, 302: 210−220. doi: 10.1016/j.foreco.2013.03.036
|
[21] |
Özçelik R, Diamantopoulou M J, Trincado G. Evaluation of potential modeling approaches for Scots pine stem diameter prediction in north-eastern Turkey[J]. Computers and Electronics in Agriculture, 2019, 162: 773−782. doi: 10.1016/j.compag.2019.05.033
|
[22] |
Zheng J, Zang H, Yin S, et al. Modeling height-diameter relationship for artificial monoculture Metasequoia glyptostroboides in sub-tropic coastal megacity Shanghai, China[J]. Urban Forestry and Urban Greening, 2018, 34: 226−232. doi: 10.1016/j.ufug.2018.06.006
|
[1] | Guo Qi, Wu Yue, Zheng Huiquan, Hu Dehuo, Hu Ruiyang, Han Juan, Li Yun, Sun Yuhan. Effects of different culture conditions and their combinations on adventitious root induction of tissue culture seedlings of Chinese fir clone T-c22[J]. Journal of Beijing Forestry University, 2023, 45(1): 59-69. DOI: 10.12171/j.1000-1522.20210332 |
[2] | YAN Shao-peng, SHANG Yan-ru, LENG Shu-jiao, YANG Rui-hua, WANG Qiu-yu. Gene expression profile of aspen hybrid cuttings in two developing stages of the adventitious root.[J]. Journal of Beijing Forestry University, 2015, 37(10): 9-13. DOI: 10.13332/j.1000-1522.20130230 |
[3] | YAO Jing-han, LI Wei. Morphological and anatomical features during the formation of adventitious roots of sea buckthorn by micro-cuttage multiplication[J]. Journal of Beijing Forestry University, 2013, 35(2): 130-133. |
[4] | YANG Li-xue, WANG Hai-nan, FAN Jing. Effects of donor tree ages and plant growth regulators on the softwood cutting propagation of Hippophae rhamnoides[J]. Journal of Beijing Forestry University, 2011, 33(6): 107-111. |
[5] | LI Zhi-jun, JIAO Pei-pei, ZHOU Zheng-li, LI Qian, LI Jian-qiang. Anatomic characteristics of transverse lateral roots and adventitious buds of Populus euphratica.[J]. Journal of Beijing Forestry University, 2011, 33(5): 42-48. |
[6] | SUN Jing-shuang, ZHENG Hong-juan, JIA Gui-xia, SUN Chang-zhong, WEN Lei. Effects of different substrates, growth regulators, grades of cuttings and metabolism regulator on cutting propagation of Juniperus squamata‘Blue Star’[J]. Journal of Beijing Forestry University, 2008, 30(1): 67-73. |
[7] | XUE Kang, HE Qian, LI Ji-yue, QI Tao. Effects of plant growth regulator “Shifengle” on transpiring water-consumption of Rhus chinensis and Rhus typhina[J]. Journal of Beijing Forestry University, 2007, 29(2): 82-87. |
[8] | HE Qian, LI Ji-yue, QI Tao. Influence of plant growth regulator on transpiring water consumption of Sophora japonica L.[J]. Journal of Beijing Forestry University, 2007, 29(1): 74-78. DOI: 10.13332/j.1000-1522.2007.01.013 |
[9] | SUN Xiao-mei, ZHANG Shou-gong, WANG Xiao-shan, QI Li-wang, LÜ Shou-fang, WANG Jian-hua. Effects of growth regulators on nursery rooting and seedling growth of hybrid larch[J]. Journal of Beijing Forestry University, 2006, 28(2): 68-72. |
[10] | LI Jie, HUANG Min-ren, WANG Ming-xiu, CAI Ru. Effects of exogenous growth regulators on somatic embryogenesis of Cymbidium hybridum[J]. Journal of Beijing Forestry University, 2005, 27(4): 65-68. |
1. |
何福英,何冠润,马道承,王凌晖. 珍贵树种刨花润楠研究综述. 广西林业科学. 2024(04): 544-550 .
![]() | |
2. |
张妹,何正权,马江,桑子阳,朱仲龙,张德春,马履一,陈发菊. 基于SSR和SRAP标记的红花玉兰品种遗传关系分析及分子鉴定. 北京林业大学学报. 2019(09): 69-80 .
![]() | |
3. |
李振芳,马林江,张新叶. 湖北省刨花润楠发展现状. 湖北林业科技. 2019(06): 52-55 .
![]() | |
4. |
唐健民,范进顺,柴胜丰,邹蓉,周运鸿,韦记青. 刨花润楠扦插繁殖技术研究. 林业调查规划. 2018(03): 158-162 .
![]() | |
5. |
阳树松. 刨花润楠的优良特性及栽培技术. 绿色科技. 2018(07): 90-91 .
![]() | |
6. |
周鹏,林玮,周祥斌,陈晓阳. 刨花润楠SRAP-PCR体系建立与优化. 林业与环境科学. 2017(04): 29-33 .
![]() |