• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Tang Lin, Guan Huiyuan. Intelligent method of determining dimension of mortise and tenon joint based on parameterization[J]. Journal of Beijing Forestry University, 2021, 43(3): 145-154. DOI: 10.12171/j.1000-1522.20200104
Citation: Tang Lin, Guan Huiyuan. Intelligent method of determining dimension of mortise and tenon joint based on parameterization[J]. Journal of Beijing Forestry University, 2021, 43(3): 145-154. DOI: 10.12171/j.1000-1522.20200104

Intelligent method of determining dimension of mortise and tenon joint based on parameterization

More Information
  • Received Date: November 09, 2020
  • Revised Date: January 01, 2021
  • Available Online: January 17, 2021
  • Published Date: April 15, 2021
  •   Objective  The determination of dimensions of mortise and tenon joint is the premise of editing NC(numerical control) codes of mortise and tenon joint. It is also the foundation of realizing CNC (computer numerical control) machining of mortise and tenon joint. But the existing method of determining the dimensions of mortise and tenon joint by modifying the geometric models repeatedly is low efficiency and high difficulty, which has seriously affected the development of digital machining of mortise and tenon joint. Therefore, it is necessary to design an intelligent method of determining dimension of mortise and tenon joint.
      Method  This paper takes a modified lattice shoulder tenon as example. In the first, the mathematical models of lattices shoulder tenon were established and the dimension parameters of latticed shoulder tenon were extracted by parametric design ideas. Secondly, the correlation functions between dimension parameters of lattice tenon were established based on assembly constraints, which included two perspectives: position relation and match relation. Then, the correlation functions between dimension parameters and process constraints were established, and value ranges and preset values of part dimensions were settled based on process constraints, which included three aspects: NC machining technology, market research and process knowledge. Finally, taking the end dimensions of parts as the input parameters, integrating with associated functions, value ranges, and preset values, the relevant parameter function table was established.
      Result  By establishing the mathematical model of mortise and tenon joint, the dimension parameters of mortise and tenon joint were extracted. According to the assembly and process constraints of mortise and tenon joint, the correlation functions between dimension parameters were established successfully, and the value ranges and the default values were obtained. By founding the correlation function table of dimension parameters, the system can automatically output other dimension parameters by just inputting the cross-section dimensions of the mortise and tenon parts.
      Conclusion  The intelligent method of determining dimension of mortise and tenon joint was established on the combination of assembly and process constraints, that was also the scientific arrangement and reuse of process knowledge. This method can not only help to realize the intelligent determination of dimension, but also provide basic condition for intelligent manufacturing of mortise and tenon joints, even solid wood furniture processing.
  • [1]
    严婕. 数控加工机床与加工中心在家具制造业中的应用[J]. 林业机械与木工设备, 2014, 24(6):56−57. doi: 10.3969/j.issn.2095-2953.2014.06.023.

    Yan J. Application of CNC machining lathes and machining centers in the furniture manufacturing industry[J]. Forestry Machinery & Woodworking Equipment, 2014, 24(6): 56−57. doi: 10.3969/j.issn.2095-2953.2014.06.023.
    [2]
    Podskarbi M, Smardzewski J, Moliński K, et al. Design methodology of new furniture joints[J]. Drvna Industrija, 2017, 67(4): 371−380. doi: 10.5552/drind.2016.1622
    [3]
    唐立华, 杨元. 艺术生态视野下明清家具艺术的衍生传承研究[J]. 家具与室内装饰, 2019(11):14−15.

    Tang L H, Yang Y. Research on inheritance and development of Ming and Qing furniture art from the perspective of art ecology[J]. Furniture & Interior Design, 2019(11): 14−15.
    [4]
    丁刚, 赵小芳. 运用参数化方法提升数控加工编程的效率[J]. 机电产品开发与创新, 2016, 29(1):101−102. doi: 10.3969/j.issn.1002-6673.2016.01.038.

    Ding G, Zhao X F. Using the parametric method to improve numerical control machining programming efficiency[J]. Development & Innovation of Machinery & Electrical Products, 2016, 29(1): 101−102. doi: 10.3969/j.issn.1002-6673.2016.01.038.
    [5]
    张冶, 陈志英. 基于装配约束关系的零部件参数化设计[J]. 机械科学与技术, 2003(5):710−712. doi: 10.3321/j.issn:1003-8728.2003.05.008.

    Zhang Y, Chen Z Y. Parametric design for aeroengine parts based on assembly constraint relations[J]. Mechanical Science and Technology, 2003(5): 710−712. doi: 10.3321/j.issn:1003-8728.2003.05.008.
    [6]
    杜宝江, 孟玉杰, 朱晨旗, 等. 飞机标准件号的多级筛选智能匹配技术[J]. 机械设计与研究, 2013, 29(6):43−46. doi: 10.3969/j.issn.1006-2343.2013.06.012

    Du B J, Meng Y J, Zhu C Q, et al. The study on multilevel filter with intelligent matching technology for aircraft standard parts[J]. Machine Design and Research, 2013, 29(6): 43−46. doi: 10.3969/j.issn.1006-2343.2013.06.012
    [7]
    盛步云, 张成雷, 卢其兵, 等. 云制造服务平台供需智能匹配的研究与实现[J]. 计算机集成制造系统, 2015, 21(3):822−830.

    Sheng B Y, Zhang C L, Lu Q B, et al. Research and implementation of cloud manufacturing service platforms intelligent matching for supply and demand[J]. Computer Integrated Manufacturing Systems, 2015, 21(3): 822−830.
    [8]
    赵月容. 可重构板式家具生产系统的建模与优化研究[D]. 哈尔滨: 东北林业大学, 2012.

    Zhao Y R. Research on modeling and optimating of reconfigurable panel furniture manufacturing system[D]. Harbin: Northeast Forestry University, 2012.
    [9]
    郭飞燕, 刘检华, 邹方, 等. 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报, 2019, 55(17):110−132. doi: 10.3901/JME.2019.17.110.

    Guo F Y, Liu J H, Zou F, et al. Research on the State-of-art, connotation and key implementation technology of assembly process planning with digital twin[J]. Journal of Mechanical Engineering, 2019, 55(17): 110−132. doi: 10.3901/JME.2019.17.110.
    [10]
    陈于书, 王帆. 红木家具零件的参数化设计研究[J]. 木材加工机械, 2017, 28(4):11−15.

    Chen Y S, Wang F. Study of parametric design of parts of mahogany furniture[J]. Wood Processing Machinery, 2017, 28(4): 11−15.
    [11]
    Hagen H, Roller D. Geometric modeling methods and applications[M]. New York: Springer-Verlag, 1991.
    [12]
    王进荣. 明式桌椅类家具结构研究[D]. 福州: 福建农林大学, 2018.

    Wang J R. Research on the structure and model of table and chair in Ming-style furniture[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018.
    [13]
    王风涛. 基于高级几何学复杂建筑形体的生成及建造研究[D]. 北京: 清华大学, 2012.

    Wang F T. Generating and fabricating of complex architectural form based on advanced geometry[D]. Beijing: Tsinghua University, 2012.
    [14]
    张胜欢. 基于Solidworks的明式家具三维参数化模型库的研究[D]. 南京: 南京林业大学, 2015.

    Zhang S H. Research on parametric model library of Ming-style furniture based on solidworks[D]. Nanjing: Nanjing Forestry University, 2015.
    [15]
    欧长劲, 苏之晓, 李燕. 基于SolidWorks API的参数化设计及智能装配研究[J]. 轻工机械, 2012, 30(5):69−72. doi: 10.3969/j.issn.1005-2895.2012.05.019.

    Ou C J, Su Z X, Li Y. Parametric design and intelligent assembly research based on SolidWorks API[J]. Light Industry Machinery, 2012, 30(5): 69−72. doi: 10.3969/j.issn.1005-2895.2012.05.019.
    [16]
    金昊炫. 基于UG的注塑机模板参数化CAD系统的研究和实现[D]. 杭州: 浙江大学, 2003.

    Jin H X. The research & realization of injection machine moulding board parametric CAD system based on UG[D]. Hangzhou: Zhejiang University, 2003.
    [17]
    Hillyard R C, Braid I C. Analysis of dimensions and tolerances in computer-aided mechanical design[J]. Computer-Aided Design, 1978, 10(3): 161−166. doi: 10.1016/0010-4485(78)90140-9.
    [18]
    朱云, 申黎明. 面向用户装配的实木家具榫卯结构设计[J]. 林业工程学报, 2018, 3(3):142−148.

    Zhu Y, Shen L M. Design for user assembly mortise and tenon structure in solid wood furniture[J]. Journal of Forestry Engineering, 2018, 3(3): 142−148.
    [19]
    贾棋, 高新凯, 罗钟铉, 等. 基于几何关系约束的特征点匹配算法[J]. 计算机辅助设计与图形学学报, 2015, 27(8):1388−1397. doi: 10.3969/j.issn.1003-9775.2015.08.005.

    Jia Q, Gao X K, Luo Z X, et al. Feature points matching based on geometric constraints[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(8): 1388−1397. doi: 10.3969/j.issn.1003-9775.2015.08.005.
    [20]
    杨建福. 榫卯结构参数对其力学性能的影响研究[D]. 北京: 北京工业大学, 2017.

    Yang J F. Effect of parameters on mechanical properties of mortise and tenon structures[D]. Beijing: Beijing University of Technology, 2017.
    [21]
    钟世禄, 关惠元. 椭圆榫过盈配合量与木材密度的关系[J]. 林业科技开发, 2007(2):57−59. doi: 10.3969/j.issn.1000-8101.2007.02.018.

    Zhong S L, Guan H Y. Relationship between optimal value of interference fit and wood density in oval tenon joint[J]. Journal of Forestry Engineering, 2007(2): 57−59. doi: 10.3969/j.issn.1000-8101.2007.02.018.
    [22]
    胡文刚, 白珏, 关惠元. 一种速生材榫接合节点增强方法[J]. 北京林业大学学报, 2017, 39(4):101−107.

    Hu W G, Bai J, Guan H Y. Investigation on a method of increasing mortise and tenon joint strength of a fast growing wood[J]. Journal of Beijing Forestry University, 2017, 39(4): 101−107.
    [23]
    赵霞, 陈洋, 殷超. 现代需求与工艺对新中式家具构建影响研究[J]. 设计, 2019, 32(22):122−124.

    Zhao X, Chen Y, Yin C. Research on the influence of modern demand and craft on the construction of new Chinese style furniture[J]. Design, 2019, 32(22): 122−124.
    [24]
    李敏, 吴智慧, 毛轶超. 现代红木家具榫卯形式的研究[J]. 包装工程, 2015(4):88−92.

    Li M, Wu Z H, Mao Y C. The types of mortise and tenon in modern mahogany of furniture[J]. Packaging Engineering, 2015(4): 88−92.
    [25]
    王世襄. 明式家具研究[M]. 中国香港: 三联书店有限公司, 1989.

    Wang S X. Ming furniture[M]. Hong Kong: SDX Joint Publishing Company, 1989.
    [26]
    詹金武, 李涛, 李超. 基于人工智能的TBM选型适应性评价决策支持系统[J]. 煤炭学报, 2019, 44(10):3258−3271.

    Zhan J W, Li T, Li C. Decision support system of adaptability evaluation for TBM selection based on artificial intelligence[J]. Journal of China Coal Societ, 2019, 44(10): 3258−3271.
    [27]
    刘红政. 产品设计重用中的创新方法研究[D]. 杭州: 浙江大学, 2008.

    Liu H Z. Research on innovative method of product design reuse[D]. Hangzhou: Zhejiang University, 2008.
  • Cited by

    Periodical cited type(1)

    1. 党英侨,殷晶晶,陈传佳,孙丽丽,刘鹏,曹传旺. 转舞毒蛾LdCYP6AN15v1基因果蝇品系对氯虫苯甲酰胺胁迫响应. 林业科学. 2017(06): 94-104 .

    Other cited types(2)

Catalog

    Article views (1904) PDF downloads (69) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return