• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Sheng, Zhang Youxiang, Li Xiang, Tian Jiaxin, Wang Wanru. Application of pipe model and the theory of water transportation pattern through tree rings in larch productivity estimation[J]. Journal of Beijing Forestry University, 2021, 43(3): 18-26. DOI: 10.12171/j.1000-1522.20200117
Citation: Liu Sheng, Zhang Youxiang, Li Xiang, Tian Jiaxin, Wang Wanru. Application of pipe model and the theory of water transportation pattern through tree rings in larch productivity estimation[J]. Journal of Beijing Forestry University, 2021, 43(3): 18-26. DOI: 10.12171/j.1000-1522.20200117

Application of pipe model and the theory of water transportation pattern through tree rings in larch productivity estimation

More Information
  • Received Date: April 19, 2020
  • Revised Date: June 07, 2020
  • Available Online: December 27, 2020
  • Published Date: April 15, 2021
  •   Objective  On the basis of pipe model and the theory of water transportation pattern through tree rings, we investigated the canopy productivity structure of Larix olgensis and leaf biomass models for four larch subspecies to provide a theoretical and technological background for evaluating canopy productivity and studying the pattern of water transportation through tree rings.
      Method  We analyzed the canopy productivity structure and fitted leaf biomass models with the data collected from canopy analysis, biomass sampling and dye tracer experiment in tree trunks, as well as comparing the selected predictors and the estimation accuracy of the models for varied larch subspecies at different ages.
      Result  (1) The sectional area of current-year ring of 11-year-old Larix olgensis at breast height accounted for 19.64% of the total sectional area capable of conducting water but provided the water transportation for 29.8% of the total canopy leaf area, indicating that the water transportation rate of current-year ring was faster than others. (2) Based on pipe model and the theory of water transportation pattern through tree rings, both leaf area and leaf biomass were affected to a certain degree by the water transportation capacity and branch mechanical support capacity, which were represented by two types of predictor variables relating to branch mass and water transportation capacity, respectively. (3) The biomass models with two types of predictor variabels for the four Larix subspecies had high estimation accuracy. (4) In order to facilitate the application, models with two predictors were fitted, and predicted values given by these reduced models were highly correlated to leaf biomass observations for the four Larix subspeices. (5) We fitted an ANCOVA model of leaf biomass on sectional area of branch at base, with the four Larix subspeices incorporated. Statistical tests for testing homogeneous intercept and slope showed that the slope and intercept for Larix gmelinii were significantly different from those for other three subspecies, and so was Larix principis from Larix leptolepis. In comparison, the difference between Larix principis and Larix olgensis was not significant. The results reflectd the differences in the canopy shape of the four larch subspecies.
      Conclusion  The pipe model and theory of water trasportation pattern have a wide application prospect in studying tree productivity structure and productivity evaluation. According to this, explanatory variables for leaf biomass can be divided into two categories, related to branch mass and water trasportation capability, respectively. The fitted standard model and reduced models of leaf biomass could produce accurate estimates for the four Larix subspecies.
  • [1]
    Shinozaki K, Yoda K, Hozumi K, et al. A quantitative analysis of plant form: the pipe model theory basic analysis[J]. Japanese Journal of Ecology, 1964, 14 (3): 97−105.
    [2]
    Oohata S, Shinozaki K. A statical model of plant form: further analysis of the pipe model theory[J]. Japanese Journal of Ecology, 1979, 29(4): 323−335.
    [3]
    城田徹央, 作田耕太郎. 「樹形のパイプモデル」は「樹形」をどこまで説明できるだろうか?―スギとヒノキの場合[J]. 生物科学(日本), 2003, 54(3):163−171.

    Tetsuoh S, Kotaro S. Can ‘the pipe model of tree form’ explain ‘the tree form’ in the case of Cryptomeria Japonica andChamaecyparis obtuse[J]. Bioscience (Japan), 2003, 54(3): 163−171.
    [4]
    马钦彦, 刘盛, 刘志刚. 树形管道模型原理[J]. 北京林业大学学报, 1991, 13(3):84−91.

    Ma Q Y, Liu S, Liu Z G. The pipe theory of tree form (a review)[J]. Journal of Beijing Forestry University, 1991, 13(3): 84−91.
    [5]
    马钦彦, 刘盛, 刘志刚, 等. 华北落叶松单木管道模型[J]. 北京林业大学学报, 1992, 14(2):11−16.

    Ma Q Y, Liu S, Liu Z G, et al. Pipe model of individual trees for prince rupprecht ’s larch[J]. Journal of Beijing Forestry University, 1992, 14(2): 11−16.
    [6]
    刘盛. 华北落叶松树形管道模型的研究[D]. 北京: 北京林业大学, 1991.

    Liu S. The pipe theory of tree form of Larix principis-rupprechtii[D]. Beijing: Beijing Forestry University, 1991.
    [7]
    刘盛, 宋彩民, 李国伟. 4种林木年轮水分输导模式研究[J]. 北京林业大学学报, 2011, 33(2):14−18.

    Liu S, Song C M, Li G W. Patterns of water transport in tree rings of four tree species[J]. Journal of Beijing Forestry University, 2011, 33(2): 14−18.
    [8]
    马菁, 郭建斌, 刘泽彬, 等. 六盘山华北落叶松林分蒸腾日内变化及其对环境因子的响应[J]. 北京林业大学学报, 2020, 42(5):1−11.

    Ma J, Guo J B, Liu Z B, et al. Diurnal variations of stand transpiration of Larix principis-rupprechtii forest and its response to environmental factors in Liupan Mountains of northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 1−11.
    [9]
    刘盛, 宋全民. 华北落叶松边材在树干中垂直分布的探讨[J]. 吉林林学院学报, 1992, 8(2):57−60.

    Liu S, Song Q M. The discussion of the vertical distribution in the stem of the sapwood area of Larix principis-rupprechtii Mayi[J]. Journal of Jilin Forestry Institute, 1992, 8(2): 57−60.
    [10]
    刘盛, 郝广明, 拱化国. 应用管道模型原理估测华北落叶松叶量叶面积的方法[J]. 吉林林学院学报, 1993, 9(2):25−32.

    Liu S, Hao G M, Gong H G. A measure to estimate the leaf biomass and leaf area of Larix Principis-rupprechtii with pipe model principle[J]. Journal of Jilin Forestry Institute, 1993, 9(2): 25−32.
    [11]
    刘盛, 李国伟. 基于管道模型理论的树形结构分析[J]. 东北林业大学学报, 2006, 34(6):15−16. doi: 10.3969/j.issn.1000-5382.2006.06.006.

    Liu S, Li G W. Tree structure based on pipe model theory[J]. Journal of Northeast Forestry University, 2006, 34(6): 15−16. doi: 10.3969/j.issn.1000-5382.2006.06.006.
    [12]
    Hinckley R, 曾兆芬. 栎树叶重和叶面积与当年边材面积的关系[J]. 四川林业科技, 1981(2):94−97.

    Hinckley R, Zeng Z F. Relationship between leaf biomassleaf area and sapwood area of Quercus variabilis[J]. Sichuan Forestry Science and Technology, 1981(2): 94−97.
    [13]
    杨洪国, 李治宇. 应用管道模型原理建立柏木桤木叶面积叶量估测模型[J]. 四川林勘设计, 2012(1):35−37.

    Yang H G, Li Z Y. Estimation models for leaf area and amount of cedarwood and alder based on the pipeline model[J]. Sichuan Forestry Exploration and Design, 2012(1): 35−37.
    [14]
    刘盛, 刘成. 长白落叶松水分输导模式及叶生物量估测方法[J]. 东北林业大学学报, 2005, 33(5):35−37. doi: 10.3969/j.issn.1000-5382.2005.05.013.

    Liu S, Liu C. The model of water transportation and the estimation methods of leaf biomass for Larix olgensis[J]. Journal of Northeast Forestry University, 2005, 33(5): 35−37. doi: 10.3969/j.issn.1000-5382.2005.05.013.
    [15]
    钱能志. 杉木叶量叶面积与边材面积关系研究[J]. 南京林业大学学报, 1989, 13(4):75−79.

    Qian N Z. The relationship of leaf and foliage biomass to sapwood area in Chinese fir[J]. Journal of Nanjing Forestry University, 1989, 13(4): 75−79.
    [16]
    项文化, 田大伦, 闫文德. 森林生物量与生产力研究综述[J]. 中南林业调查规划, 2003, 22(3):57−60, 64. doi: 10.3969/j.issn.1003-6075.2003.03.020.

    Xiang W H, Tian D L, Yan W D. Review of researches on forest biomass and productivity[J]. Central South Forest Inventory and Planning, 2003, 22(3): 57−60, 64. doi: 10.3969/j.issn.1003-6075.2003.03.020.
    [17]
    胡屾, 郭海沣, 刘国成, 等. 不同林分条件下落叶松人工林生物量研究[J]. 林业科技情报, 2017, 49(1):24−27. doi: 10.3969/j.issn.1009-3303.2017.01.009

    Hu S, Guo H F, Liu G C, et al. Study on biomass of Larix gmelinii plantation of different forest[J]. Forestry Science and Technology Information, 2017, 49(1): 24−27. doi: 10.3969/j.issn.1009-3303.2017.01.009
    [18]
    罗云建, 张小全, 侯振宏, 等. 我国落叶松林生物量碳计量参数的初步研究[J]. 植物生态学报, 2007, 31(6):1111−1118.

    Luo Y J, Zhang X Q, Hou Z H, et al. Biomass carbon accounting factors of Larix forests in China based on literature data[J]. Chinese Journal of Plant Ecology, 2007, 31(6): 1111−1118.
    [19]
    Trugman A T, Anderegg L D L, Wolfe B L, et al. Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity[J]. Global Change Biology, 2019, 25(10): 3395−3405. doi: 10.1111/gcb.14680.
    [20]
    董利虎, 李凤日, 贾炜玮, 等. 含度量误差的黑龙江省主要树种生物量相容性模型[J]. 应用生态学报, 2011, 22(10):2653−2661.

    Dong L H, Li F R, Jia W W, et al. Compatible biomass models for main tree species with measurement error in Heilongjiang Province of Northeast China[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2653−2661.
    [21]
    贾炜玮, 李凤日, 董利虎, 等. 基于相容性生物量模型的樟子松林碳密度与碳储量研究[J]. 北京林业大学学报, 2012, 34(1):6−13.

    Jia W W, Li F R, Dong L H, et al. Carbon density and storage for Pinus sylvestris var. mongolica plantation based on compatible biomass models[J]. Journal of Beijing Forestry University, 2012, 34(1): 6−13.
    [22]
    董利虎, 李凤日, 宋玉文. 东北林区4个天然针叶树种单木生物量模型误差结构及可加性模型[J]. 应用生态学报, 2015, 26(3):704−714.

    Dong L H, Li F R, Song Y W. Error structure and additivity of individual tree biomass model for four natural conifer species in Northeast China[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 704−714.
    [23]
    郭孝玉, 孙玉军, 刘凤娇. 不同估算树冠生物量方法的比较: 以长白落叶松林为例[J]. 林业资源管理, 2010(5):41−47. doi: 10.3969/j.issn.1002-6622.2010.05.009.

    Guo X Y, Sun Y J, Liu F J. Study on different methods of estimating crown biomass, take Larix olgensis forest as an example[J]. Forest Resources Management, 2010(5): 41−47. doi: 10.3969/j.issn.1002-6622.2010.05.009.
    [24]
    王华田, 马履一, 孙鹏森. 油松、侧柏深秋边材木质部液流变化规律的研究[J]. 林业科学, 2002, 38(5):31−37. doi: 10.3321/j.issn:1001-7488.2002.05.006.

    Wang H T, Ma L Y, Sun P S. Sap flow fluctuations of Pinus tabulaeformis and Platycladus orientalis in late autumn[J]. Scientia Silvae Sinicae, 2002, 38(5): 31−37. doi: 10.3321/j.issn:1001-7488.2002.05.006.
    [25]
    刘志刚, 马钦彦, 潘向丽. 华北落叶松边材透水性与叶面积空间分布的相关性的探讨[J]. 林业科学, 1995, 31(3):269−274.

    Liu Z G, Ma Q Y, Pan X L. An approach to relationship between sapwood permeability and distribution of leaf area for Larix principis-rupprechtii[J]. Scientia Silvae Sinicae, 1995, 31(3): 269−274.
    [26]
    马履一, 王华田. 油松边材液流时空变化及其影响因子研究[J]. 北京林业大学学报, 2020, 24(3):23−27.

    Ma L Y, Wang H T. Spatial and chronic fluctuation of sapwood flow and its relevant variables of Pinus tabulaeformis[J]. Journal of Beijing Forestry University, 2020, 24(3): 23−27.
    [27]
    郭孝玉. 长白落叶松人工林树冠结构及生长模型研究[D]. 北京: 北京林业大学, 2013.

    Guo X Y. Crown structure and growth model for Larix olgensis plantation[D]. Beijing: Beijing Forestry University, 2013.
    [28]
    闫明准, 刘兆刚. 樟子松人工林单木叶量垂直分布规律[J]. 东北林业大学学报, 2009, 37(7):16−19, 24. doi: 10.3969/j.issn.1000-5382.2009.07.006.

    Yan M Z, Liu Z G. Foliage vertical distribution of Mongolian pine plantations[J]. Journal of Northeast Forestry University, 2009, 37(7): 16−19, 24. doi: 10.3969/j.issn.1000-5382.2009.07.006.
  • Related Articles

    [1]Zhang Minghui, Yin Yunzhou, Wang Ke, Wang Shuli. Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content[J]. Journal of Beijing Forestry University, 2023, 45(9): 73-82. DOI: 10.12171/j.1000-1522.20220476
    [2]Hui Gangying, Zhao Zhonghua, Hu Yanbo, Zhang Ganggang, Zhang Gongqiao, Cheng Shiping, Lu Yanlei. Research on the measurement method of forest spatial structure diversity based on 4 neighborhood tree relationship[J]. Journal of Beijing Forestry University, 2023, 45(7): 18-26. DOI: 10.12171/j.1000-1522.20220282
    [3]Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
    [4]Hu Xuefan, Zhang Huiru, Zhou Chaofan, Zhang Xiaohong. Effects of different thinning patterns on the spatial structure of Quercus mongolica secondary forests[J]. Journal of Beijing Forestry University, 2019, 41(5): 137-147. DOI: 10.13332/j.1000-1522.20190037
    [5]LI Jian, PENG Peng, HE Huai-jiang, TAN Ling-zhao, ZHANG Xin-na, WU Xiang-ju, LIU Zhao-gang. Effects of thinning intensity on spatial structure of multi-species temperate forest at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 48-57. DOI: 10.13332/j.1000-1522.20170220
    [6]LI Ji-ping, FENG Yao, ZHAO Chun-yan, ZHANG Cai-cai. Quantitative analysis of stand spatial structure of Cunninghamia lanceolata non-commercial forest based on Voronoi diagram.[J]. Journal of Beijing Forestry University, 2014, 36(4): 1-7. DOI: 10.13332/j.cnki.jbfu.2014.04.005
    [7]WANG Ping, JIA Li-ming, WEI Song-po, WANG Qi-feng. Analysis of stand spatial structure of Platycladus orientalis recreational forest based on Voronoi diagram method[J]. Journal of Beijing Forestry University, 2013, 35(2): 39-44.
    [8]DONG Ling-bo, LIU Zhao-gang, MA Yan, NI Bao-long, LI Yuan. A new composite index of stand spatial structure for natural forest.[J]. Journal of Beijing Forestry University, 2013, 35(1): 16-22.
    [9]DUAN Chang-sheng, WANG Jun-hui, MA Jian-wei, YUAN Shi-yun, DU Yan-chang. Evaluation of Quercus aliena var. acuteserrata forest at the western segment of Qinling Mountain,northwestern China[J]. Journal of Beijing Forestry University, 2009, 31(5): 61-66.
    [10]LIU Yan, YU Xin-xiao, YUE Yong-jie, GAN Jing, WANG Xiao-ping, LI Jin-hai. Spatial structure of Robinia pseudoacacia plantation in Miyun Reservoir Watershed of Beijing.[J]. Journal of Beijing Forestry University, 2009, 31(5): 25-28.
  • Cited by

    Periodical cited type(8)

    1. 张慧,燕怡帆,朱雅,陈玉婷,王菁华,崔志鹏,杨迪,任学敏. 林分密度对伏牛山南麓山茱萸人工林林下草本植物多样性和土壤性质的影响. 西南林业大学学报(自然科学). 2025(01): 96-105 .
    2. 赵金同,马俊. 刺槐扦插育苗技术与精细抚育要点. 现代园艺. 2024(08): 49-51 .
    3. 何欢,康必均,尹婧,李菲,彭栋,李桂静,查同刚. 不同营林措施对川东华蓥山杉木林土壤团聚体稳定性及细根分布的影响. 土壤通报. 2024(02): 351-359 .
    4. 史小鹏,苟贺然,何淑勤,刘柏廷,冉兰芳,杨琪琳,扎西拉姆,陈雨馨,骆紫藤. 成都市温江区两种绿地土壤抗蚀抗冲性及其影响因素. 水土保持通报. 2024(04): 117-125 .
    5. 刘忆南,申振宏,都都,张知然,林勇明. 蒋家沟泥石流堆积扇不同植被类型区土壤抗蚀性评价. 应用与环境生物学报. 2024(05): 886-893 .
    6. 王依瑞,王彦辉,段文标,李平平,于澎涛,甄理,李志鑫,尚会军. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响. 应用生态学报. 2023(02): 305-314 .
    7. 赵云鹤,钟鹏,高晗,付玉. 土地利用类型对典型黑土团聚体稳定性和抗蚀性的影响. 东北林业大学学报. 2023(09): 112-119 .
    8. 胡亚伟,施政乐,刘畅,徐勤涛,张建军. 晋西黄土区刺槐林密度对林下植物多样性及土壤理化性质的影响. 生态学杂志. 2023(09): 2072-2080 .

    Other cited types(9)

Catalog

    Article views (1488) PDF downloads (74) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return